Agneev commited on
Commit
2dae6d6
1 Parent(s): e50cafb

End of training

Browse files
Files changed (2) hide show
  1. README.md +87 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: wav2vec2-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.81
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wav2vec2-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8119
36
+ - Accuracy: 0.81
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.01
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.0253 | 0.99 | 28 | 1.8206 | 0.38 |
71
+ | 1.3127 | 1.98 | 56 | 1.1930 | 0.64 |
72
+ | 0.9726 | 2.97 | 84 | 0.9269 | 0.69 |
73
+ | 1.2272 | 4.0 | 113 | 1.1682 | 0.66 |
74
+ | 0.6441 | 4.99 | 141 | 0.9781 | 0.71 |
75
+ | 0.5447 | 5.98 | 169 | 0.8603 | 0.74 |
76
+ | 0.3067 | 6.97 | 197 | 0.6313 | 0.86 |
77
+ | 0.1481 | 8.0 | 226 | 0.5746 | 0.89 |
78
+ | 0.0599 | 8.99 | 254 | 0.7602 | 0.84 |
79
+ | 0.0306 | 9.91 | 280 | 0.8119 | 0.81 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.32.0.dev0
85
+ - Pytorch 2.0.0
86
+ - Datasets 2.1.0
87
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:999776d9ae7060c65aefcc526fb940666b1e3b198d6ca74d379e906cc87e8398
3
  size 94783376
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729e6e566f16f400c1696c8d6a750d2ca0d4fbbe2d10c2f70034e21e13be8fb5
3
  size 94783376