Pclanglais
commited on
Commit
•
6b608bb
1
Parent(s):
5e8dd09
Create prompt_demo_analysis.py
Browse files- prompt_demo_analysis.py +73 -0
prompt_demo_analysis.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#A demo of a side functionality of Guillaume-Tell: guessing whether the question should open up a source retrieval pipeline.
|
3 |
+
#The function should return a structured answer in json with two component:
|
4 |
+
##A short analysis with reasoning.
|
5 |
+
##A boolean answer in French ("oui" or "non")
|
6 |
+
|
7 |
+
#Notice that json generation with LLM is still challenging due to unpredictable behavior.
|
8 |
+
#Some library like marginalia ensures the output will always be json compliant: https://github.com/Pleias/marginalia
|
9 |
+
|
10 |
+
#A typical exemple:
|
11 |
+
|
12 |
+
#{
|
13 |
+
# "analysis":"La question concerne un formulaire spécifique, le formulaire A36. Il est donc probable que des références encyclopédiques soient nécessaires pour fournir des informations précises sur ce formulaire.",
|
14 |
+
# "result":"oui"
|
15 |
+
#}
|
16 |
+
|
17 |
+
|
18 |
+
import sys, os
|
19 |
+
from pprint import pprint
|
20 |
+
from jinja2 import Environment, FileSystemLoader, meta
|
21 |
+
import yaml
|
22 |
+
|
23 |
+
import pandas as pd
|
24 |
+
from vllm import LLM, SamplingParams
|
25 |
+
|
26 |
+
|
27 |
+
sys.path.append(".")
|
28 |
+
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
29 |
+
|
30 |
+
#Specific function to deal with json format.
|
31 |
+
def get_llm_response(prompt_template, sampling_params):
|
32 |
+
prompts = [prompt_template]
|
33 |
+
outputs = llm.generate(prompts, sampling_params, use_tqdm = False)
|
34 |
+
generated_text = outputs[0].outputs[0].text
|
35 |
+
if generated_text[-1] != "}":
|
36 |
+
generated_text = generated_text + "}"
|
37 |
+
prompt = prompt_template + generated_text
|
38 |
+
return prompt, generated_text
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
|
42 |
+
with open('prompt_config.yaml') as f:
|
43 |
+
config = yaml.safe_load(f)
|
44 |
+
|
45 |
+
print("prompt format:", config.get("prompt_format"))
|
46 |
+
print(config)
|
47 |
+
print()
|
48 |
+
for prompt in config["prompts"]:
|
49 |
+
if prompt["mode"] == "analysis":
|
50 |
+
print(f'--- prompt mode: {prompt["mode"]} ---')
|
51 |
+
env = Environment(loader=FileSystemLoader("."))
|
52 |
+
template = env.get_template(prompt["template"])
|
53 |
+
|
54 |
+
source = template.environment.loader.get_source(template.environment, template.name)
|
55 |
+
variables = meta.find_undeclared_variables(env.parse(source[0]))
|
56 |
+
|
57 |
+
print("variables:", variables)
|
58 |
+
print("---")
|
59 |
+
|
60 |
+
data = {"query": "Comment obtenir le formulaire A36 ?"}
|
61 |
+
if "system_prompt" in variables:
|
62 |
+
data["system_prompt"] = prompt["system_prompt"]
|
63 |
+
|
64 |
+
rendered_template = template.render(**data)
|
65 |
+
print(rendered_template)
|
66 |
+
print("---")
|
67 |
+
|
68 |
+
llm = LLM("mistral-mfs-reference-2/mistral-mfs-reference-2")
|
69 |
+
|
70 |
+
sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=300, stop="}")
|
71 |
+
|
72 |
+
prompt, generated_text = get_llm_response(rendered_template, sampling_params)
|
73 |
+
print("Albert : ", generated_text)
|