--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 39.964580873671785 --- # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 3.1893 - Wer Ortho: 53.3621 - Wer: 39.9646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 5 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 4.3974 | 0.18 | 5 | 4.3934 | 54.1641 | 40.1417 | | 4.2086 | 0.36 | 10 | 3.1893 | 53.3621 | 39.9646 | ### Framework versions - Transformers 4.32.0 - Pytorch 1.12.1+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3