End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,23 +52,27 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 5e-
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- training_steps:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 2.
|
69 |
-
|
|
70 |
-
| 1.
|
71 |
-
| 1.
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.77
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9423
|
36 |
+
- Accuracy: 0.77
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-06
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 16
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- training_steps: 3000
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.1574 | 8.85 | 500 | 1.8008 | 0.66 |
|
71 |
+
| 1.5882 | 17.7 | 1000 | 1.3509 | 0.7 |
|
72 |
+
| 1.2416 | 26.55 | 1500 | 1.1347 | 0.72 |
|
73 |
+
| 1.037 | 35.4 | 2000 | 1.0163 | 0.74 |
|
74 |
+
| 0.9152 | 44.25 | 2500 | 0.9583 | 0.76 |
|
75 |
+
| 0.8556 | 53.1 | 3000 | 0.9423 | 0.77 |
|
76 |
|
77 |
|
78 |
### Framework versions
|