Aditya3107
commited on
Commit
•
89cc42e
1
Parent(s):
42eb712
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-Irish-common-voice-Fleurs-living-audio-300m
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-Irish-common-voice-Fleurs-living-audio-300m
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3362
|
20 |
+
- Wer: 0.1978
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 3
|
44 |
+
- total_train_batch_size: 24
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 18.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| No log | 0.56 | 200 | 2.8832 | 1.0 |
|
56 |
+
| No log | 1.11 | 400 | 1.1705 | 0.7788 |
|
57 |
+
| 3.3987 | 1.67 | 600 | 0.7739 | 0.5895 |
|
58 |
+
| 3.3987 | 2.23 | 800 | 0.6045 | 0.4902 |
|
59 |
+
| 0.8313 | 2.78 | 1000 | 0.5235 | 0.4394 |
|
60 |
+
| 0.8313 | 3.34 | 1200 | 0.4824 | 0.4002 |
|
61 |
+
| 0.8313 | 3.9 | 1400 | 0.4378 | 0.3754 |
|
62 |
+
| 0.5342 | 4.46 | 1600 | 0.4433 | 0.3634 |
|
63 |
+
| 0.5342 | 5.01 | 1800 | 0.4103 | 0.3485 |
|
64 |
+
| 0.3792 | 5.57 | 2000 | 0.3816 | 0.3310 |
|
65 |
+
| 0.3792 | 6.13 | 2200 | 0.3953 | 0.3225 |
|
66 |
+
| 0.3792 | 6.68 | 2400 | 0.3995 | 0.3132 |
|
67 |
+
| 0.2924 | 7.24 | 2600 | 0.3907 | 0.2930 |
|
68 |
+
| 0.2924 | 7.8 | 2800 | 0.3517 | 0.2740 |
|
69 |
+
| 0.2217 | 8.36 | 3000 | 0.3361 | 0.2591 |
|
70 |
+
| 0.2217 | 8.91 | 3200 | 0.3340 | 0.2451 |
|
71 |
+
| 0.2217 | 9.47 | 3400 | 0.3126 | 0.2448 |
|
72 |
+
| 0.1714 | 10.03 | 3600 | 0.3441 | 0.2556 |
|
73 |
+
| 0.1714 | 10.58 | 3800 | 0.3404 | 0.2521 |
|
74 |
+
| 0.1395 | 11.14 | 4000 | 0.3728 | 0.2518 |
|
75 |
+
| 0.1395 | 11.7 | 4200 | 0.3829 | 0.2396 |
|
76 |
+
| 0.1395 | 12.26 | 4400 | 0.3466 | 0.2361 |
|
77 |
+
| 0.1069 | 12.81 | 4600 | 0.3188 | 0.2241 |
|
78 |
+
| 0.1069 | 13.37 | 4800 | 0.3396 | 0.2197 |
|
79 |
+
| 0.0845 | 13.93 | 5000 | 0.3365 | 0.2206 |
|
80 |
+
| 0.0845 | 14.48 | 5200 | 0.3459 | 0.2209 |
|
81 |
+
| 0.0845 | 15.04 | 5400 | 0.3429 | 0.2194 |
|
82 |
+
| 0.0675 | 15.6 | 5600 | 0.3434 | 0.2182 |
|
83 |
+
| 0.0675 | 16.16 | 5800 | 0.3434 | 0.2083 |
|
84 |
+
| 0.0561 | 16.71 | 6000 | 0.3375 | 0.2036 |
|
85 |
+
| 0.0561 | 17.27 | 6200 | 0.3446 | 0.1987 |
|
86 |
+
| 0.0561 | 17.83 | 6400 | 0.3362 | 0.1978 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.24.0
|
92 |
+
- Pytorch 1.13.0+cu117
|
93 |
+
- Datasets 2.7.1
|
94 |
+
- Tokenizers 0.13.2
|