Aditya3107 commited on
Commit
89cc42e
1 Parent(s): 42eb712

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-Irish-common-voice-Fleurs-living-audio-300m
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-Irish-common-voice-Fleurs-living-audio-300m
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3362
20
+ - Wer: 0.1978
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 3
44
+ - total_train_batch_size: 24
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 18.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | No log | 0.56 | 200 | 2.8832 | 1.0 |
56
+ | No log | 1.11 | 400 | 1.1705 | 0.7788 |
57
+ | 3.3987 | 1.67 | 600 | 0.7739 | 0.5895 |
58
+ | 3.3987 | 2.23 | 800 | 0.6045 | 0.4902 |
59
+ | 0.8313 | 2.78 | 1000 | 0.5235 | 0.4394 |
60
+ | 0.8313 | 3.34 | 1200 | 0.4824 | 0.4002 |
61
+ | 0.8313 | 3.9 | 1400 | 0.4378 | 0.3754 |
62
+ | 0.5342 | 4.46 | 1600 | 0.4433 | 0.3634 |
63
+ | 0.5342 | 5.01 | 1800 | 0.4103 | 0.3485 |
64
+ | 0.3792 | 5.57 | 2000 | 0.3816 | 0.3310 |
65
+ | 0.3792 | 6.13 | 2200 | 0.3953 | 0.3225 |
66
+ | 0.3792 | 6.68 | 2400 | 0.3995 | 0.3132 |
67
+ | 0.2924 | 7.24 | 2600 | 0.3907 | 0.2930 |
68
+ | 0.2924 | 7.8 | 2800 | 0.3517 | 0.2740 |
69
+ | 0.2217 | 8.36 | 3000 | 0.3361 | 0.2591 |
70
+ | 0.2217 | 8.91 | 3200 | 0.3340 | 0.2451 |
71
+ | 0.2217 | 9.47 | 3400 | 0.3126 | 0.2448 |
72
+ | 0.1714 | 10.03 | 3600 | 0.3441 | 0.2556 |
73
+ | 0.1714 | 10.58 | 3800 | 0.3404 | 0.2521 |
74
+ | 0.1395 | 11.14 | 4000 | 0.3728 | 0.2518 |
75
+ | 0.1395 | 11.7 | 4200 | 0.3829 | 0.2396 |
76
+ | 0.1395 | 12.26 | 4400 | 0.3466 | 0.2361 |
77
+ | 0.1069 | 12.81 | 4600 | 0.3188 | 0.2241 |
78
+ | 0.1069 | 13.37 | 4800 | 0.3396 | 0.2197 |
79
+ | 0.0845 | 13.93 | 5000 | 0.3365 | 0.2206 |
80
+ | 0.0845 | 14.48 | 5200 | 0.3459 | 0.2209 |
81
+ | 0.0845 | 15.04 | 5400 | 0.3429 | 0.2194 |
82
+ | 0.0675 | 15.6 | 5600 | 0.3434 | 0.2182 |
83
+ | 0.0675 | 16.16 | 5800 | 0.3434 | 0.2083 |
84
+ | 0.0561 | 16.71 | 6000 | 0.3375 | 0.2036 |
85
+ | 0.0561 | 17.27 | 6200 | 0.3446 | 0.1987 |
86
+ | 0.0561 | 17.83 | 6400 | 0.3362 | 0.1978 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.24.0
92
+ - Pytorch 1.13.0+cu117
93
+ - Datasets 2.7.1
94
+ - Tokenizers 0.13.2