File size: 3,443 Bytes
9cfa68f
 
3217db2
9cfa68f
 
 
 
 
 
3217db2
9cfa68f
3217db2
9cfa68f
61b378e
 
3217db2
9cfa68f
9fd6334
9cfa68f
 
3217db2
 
 
 
a608058
e38e7fb
 
3217db2
e38e7fb
 
3217db2
a364e85
3217db2
 
9cfa68f
 
 
 
 
3217db2
 
 
735fb1d
3217db2
 
735fb1d
3217db2
 
 
 
 
 
 
 
 
735fb1d
3217db2
 
 
 
 
 
 
 
 
735fb1d
3217db2
e38e7fb
3217db2
 
 
e38e7fb
3217db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef0679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
base_model:
- concedo/KobbleTinyV2-1.1B
library_name: transformers
tags:
- mergekit
- merge

---
# Tinyllama-2B

This is a merge and a finetune to create a small, but very useable Model, and i have to say, its very good.

Try this Model in GGUF Q8 on my homepage [here](https://home.acu.li/)

## Basic Question:

<img src="https://huggingface.co/Aculi/Tinyllama-2B/resolve/main/.huggingface/Screenshot%202024-07-29%20073647.jpg" alt="download.png" width="800" />


## Prompt Template

Tinyllama-2B uses Alpaca:

```
### Instruction:
{prompt}

### Response:
```

### Merge Info:

This is a frankenmerge of: [concedo/KobbleTinyV2-1.1B](https://huggingface.co/concedo/KobbleTinyV2-1.1B)

The following YAML configuration was used to produce this model:

```yaml
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 16]
    model: concedo/KobbleTinyV2-1.1B
- sources:
  - layer_range: [5, 16] 
    model: concedo/KobbleTinyV2-1.1B
    parameters:
      scale:
      - filter: o_proj
        value: 0.0
      - filter: down_proj
        value: 0.0
      - value: 1.0
- sources:
  - layer_range: [5, 16] 
    model: concedo/KobbleTinyV2-1.1B
    parameters:
      scale:
      - filter: o_proj
        value: 0.0
      - filter: down_proj
        value: 0.0
      - value: 1.0
- sources:
  - layer_range: [16, 22] 
    model: concedo/KobbleTinyV2-1.1B
```

## Finetune Info:

The following YAML configuration was used to finetune this model:

```yaml
base_model: Fischerboot/2b-tiny-llama-alpaca-instr
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Fischerboot/freedom-rp-alpaca-shortend
    type: alpaca
  - path: diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca
    type: alpaca
  - path: Fischerboot/alpaca-undensored-fixed-50k
    type: alpaca
  - path: Fischerboot/DAN-alpaca
    type: alpaca
  - path: Fischerboot/rp-alpaca-next-oone
    type: alpaca

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/24r

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```

### Training results:

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7881        | 0.0017 | 1    | 2.5329          |
| 1.6899        | 0.4996 | 287  | 1.9272          |
| 1.5511        | 0.9991 | 574  | 1.8750          |
| 1.4797        | 1.4861 | 861  | 1.8476          |
| 1.5279        | 1.9856 | 1148 | 1.8270          |
| 1.4583        | 2.4726 | 1435 | 1.8275          |
| 1.5044        | 2.9721 | 1722 | 1.8215          |
| 1.3051        | 3.4582 | 2009 | 1.8243          |
| 1.5619        | 3.9578 | 2296 | 1.8245          |