stardust-coder
commited on
Commit
•
f7cdd63
1
Parent(s):
55fc1e4
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,92 @@
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
6 |
|
@@ -17,4 +103,4 @@ The following `bitsandbytes` quantization config was used during training:
|
|
17 |
### Framework versions
|
18 |
|
19 |
|
20 |
-
- PEFT 0.4.0
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
license: llama2
|
4 |
+
datasets:
|
5 |
+
- izumi-lab/llm-japanese-dataset
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
+
|
11 |
+
# AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese
|
12 |
+
|
13 |
+
This model is Llama-2-Chat 70B fine-tuned with a part of the following Japanese version of the alpaca dataset.
|
14 |
+
|
15 |
+
https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset
|
16 |
+
|
17 |
+
- 10000 steps
|
18 |
+
- batch_size = 4
|
19 |
+
|
20 |
+
|
21 |
+
## Copyright Notice
|
22 |
+
|
23 |
+
This model is built on the copyright of Meta's LLaMA.
|
24 |
+
|
25 |
+
Users of this model must also agree to Meta's license below.
|
26 |
+
|
27 |
+
https://ai.meta.com/llama/
|
28 |
+
|
29 |
+
|
30 |
+
## How to use
|
31 |
+
|
32 |
+
```python
|
33 |
+
import os
|
34 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
35 |
+
import torch
|
36 |
+
torch.cuda.empty_cache()
|
37 |
+
from peft import PeftModel
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig
|
39 |
+
|
40 |
+
# Load models
|
41 |
+
model_id = "meta-llama/Llama-2-70b-chat-hf"
|
42 |
+
bnb_config = BitsAndBytesConfig(
|
43 |
+
load_in_4bit=True,
|
44 |
+
bnb_4bit_use_double_quant=True,
|
45 |
+
bnb_4bit_quant_type="nf4",
|
46 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
47 |
+
)
|
48 |
+
config = AutoConfig.from_pretrained(model_id)
|
49 |
+
config.pretraining_tp = 1 #LLama-2-70bなら必要
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config,
|
52 |
+
device_map="auto")
|
53 |
+
|
54 |
+
# Load weights
|
55 |
+
peft_name = "AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese"
|
56 |
+
model_peft = PeftModel.from_pretrained(
|
57 |
+
model,
|
58 |
+
peft_name,
|
59 |
+
device_map="auto"
|
60 |
+
)
|
61 |
+
model_peft.eval()
|
62 |
+
|
63 |
+
device = "cuda:0"
|
64 |
+
|
65 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model.generate(**inputs,
|
69 |
+
temperature=0.0,
|
70 |
+
repetition_penalty=1.00)
|
71 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
72 |
+
outputs = model_peft.generate(**inputs,
|
73 |
+
temperature=0.0,
|
74 |
+
repetition_penalty=1.00)
|
75 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
76 |
+
```
|
77 |
+
|
78 |
+
## Sample Responses
|
79 |
+
|
80 |
+
```
|
81 |
+
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
## Training procedure
|
91 |
|
92 |
|
|
|
103 |
### Framework versions
|
104 |
|
105 |
|
106 |
+
- PEFT 0.4.0
|