Upload ProPrimeForMaskedLM
Browse files- config.json +7 -0
- model.safetensors +3 -0
- modeling_proprime.py +1179 -0
config.json
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"attention_probs_dropout_prob": 0.0,
|
|
|
|
|
|
|
3 |
"emb_layer_norm_before": false,
|
4 |
"flash_attention": true,
|
5 |
"hidden_dropout_prob": 0.0,
|
@@ -15,6 +21,7 @@
|
|
15 |
"pad_token_id": 1,
|
16 |
"position_embedding_type": "rotary",
|
17 |
"token_dropout": true,
|
|
|
18 |
"transformers_version": "4.36.2",
|
19 |
"use_cache": true,
|
20 |
"vocab_size": 33
|
|
|
1 |
{
|
2 |
+
"architectures": [
|
3 |
+
"ProPrimeForMaskedLM"
|
4 |
+
],
|
5 |
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModelForMaskedLM": "modeling_proprime.ProPrimeForMaskedLM"
|
8 |
+
},
|
9 |
"emb_layer_norm_before": false,
|
10 |
"flash_attention": true,
|
11 |
"hidden_dropout_prob": 0.0,
|
|
|
21 |
"pad_token_id": 1,
|
22 |
"position_embedding_type": "rotary",
|
23 |
"token_dropout": true,
|
24 |
+
"torch_dtype": "float32",
|
25 |
"transformers_version": "4.36.2",
|
26 |
"use_cache": true,
|
27 |
"vocab_size": 33
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc27a3f563758e3a1445c31e0280c1672b51a07c6199ab5056c2c32ed9c12844
|
3 |
+
size 2604245372
|
modeling_proprime.py
ADDED
@@ -0,0 +1,1179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from transformers.modeling_outputs import (
|
10 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
11 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
12 |
+
MaskedLMOutput,
|
13 |
+
ModelOutput,
|
14 |
+
)
|
15 |
+
from transformers.modeling_utils import (
|
16 |
+
PreTrainedModel,
|
17 |
+
find_pruneable_heads_and_indices,
|
18 |
+
prune_linear_layer,
|
19 |
+
)
|
20 |
+
from transformers.utils import logging
|
21 |
+
from ProPrime.configuration_proprime import ProPrimeConfig
|
22 |
+
from torch.nn.functional import scaled_dot_product_attention
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
PROPRIME_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
28 |
+
"AI4protein/proprime_650M",
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
def rotate_half(x):
|
33 |
+
return torch.cat((-x[..., x.shape[-1] // 2 :], x[..., : x.shape[-1] // 2]), dim=-1)
|
34 |
+
|
35 |
+
|
36 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
37 |
+
cos = cos[:, :, : x.shape[-2], :]
|
38 |
+
sin = sin[:, :, : x.shape[-2], :]
|
39 |
+
return (x * cos) + (rotate_half(x) * sin)
|
40 |
+
|
41 |
+
|
42 |
+
def gelu(x):
|
43 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
44 |
+
|
45 |
+
|
46 |
+
class RotaryEmbedding(torch.nn.Module):
|
47 |
+
def __init__(self, dim: int):
|
48 |
+
super().__init__()
|
49 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
50 |
+
inv_freq = 1.0 / (
|
51 |
+
10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)
|
52 |
+
)
|
53 |
+
inv_freq = inv_freq
|
54 |
+
self.register_buffer("inv_freq", inv_freq)
|
55 |
+
|
56 |
+
self._seq_len_cached = None
|
57 |
+
self._cos_cached = None
|
58 |
+
self._sin_cached = None
|
59 |
+
|
60 |
+
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
61 |
+
seq_len = x.shape[seq_dimension]
|
62 |
+
|
63 |
+
# Reset the tables if the sequence length has changed,
|
64 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
65 |
+
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
66 |
+
self._seq_len_cached = seq_len
|
67 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
68 |
+
self.inv_freq
|
69 |
+
)
|
70 |
+
freqs = torch.outer(t, self.inv_freq)
|
71 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
72 |
+
|
73 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
74 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
75 |
+
|
76 |
+
return self._cos_cached, self._sin_cached
|
77 |
+
|
78 |
+
def forward(
|
79 |
+
self, q: torch.Tensor, k: torch.Tensor
|
80 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
81 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
82 |
+
k, seq_dimension=-2
|
83 |
+
)
|
84 |
+
|
85 |
+
return (
|
86 |
+
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
87 |
+
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
class ProPrimeEmbeddings(nn.Module):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.word_embeddings = nn.Embedding(
|
96 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
97 |
+
)
|
98 |
+
|
99 |
+
if config.emb_layer_norm_before:
|
100 |
+
self.layer_norm = nn.LayerNorm(
|
101 |
+
config.hidden_size, eps=config.layer_norm_eps
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
self.layer_norm = None
|
105 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
106 |
+
self.position_embedding_type = getattr(
|
107 |
+
config, "position_embedding_type", "absolute"
|
108 |
+
)
|
109 |
+
self.register_buffer(
|
110 |
+
"position_ids",
|
111 |
+
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
112 |
+
persistent=False,
|
113 |
+
)
|
114 |
+
|
115 |
+
self.padding_idx = config.pad_token_id
|
116 |
+
if self.position_embedding_type == "absolute":
|
117 |
+
self.position_embeddings = nn.Embedding(
|
118 |
+
config.max_position_embeddings,
|
119 |
+
config.hidden_size,
|
120 |
+
padding_idx=self.padding_idx,
|
121 |
+
)
|
122 |
+
self.token_dropout = config.token_dropout
|
123 |
+
self.mask_token_id = config.mask_token_id
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
input_ids=None,
|
128 |
+
attention_mask=None,
|
129 |
+
position_ids=None,
|
130 |
+
inputs_embeds=None,
|
131 |
+
past_key_values_length=0,
|
132 |
+
):
|
133 |
+
if position_ids is None:
|
134 |
+
if input_ids is not None:
|
135 |
+
position_ids = create_position_ids_from_input_ids(
|
136 |
+
input_ids, self.padding_idx, past_key_values_length
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
140 |
+
inputs_embeds
|
141 |
+
)
|
142 |
+
|
143 |
+
if inputs_embeds is None:
|
144 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
145 |
+
|
146 |
+
embeddings = inputs_embeds
|
147 |
+
|
148 |
+
if self.token_dropout:
|
149 |
+
embeddings = embeddings.masked_fill(
|
150 |
+
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0
|
151 |
+
)
|
152 |
+
mask_ratio_train = 0.15 * 0.8
|
153 |
+
src_lengths = attention_mask.sum(-1)
|
154 |
+
mask_ratio_observed = (input_ids == self.mask_token_id).sum(
|
155 |
+
-1
|
156 |
+
).float() / src_lengths
|
157 |
+
embeddings = (
|
158 |
+
embeddings
|
159 |
+
* (1 - mask_ratio_train)
|
160 |
+
/ (1 - mask_ratio_observed)[:, None, None]
|
161 |
+
).to(embeddings.dtype)
|
162 |
+
|
163 |
+
if self.position_embedding_type == "absolute":
|
164 |
+
position_embeddings = self.position_embeddings(position_ids)
|
165 |
+
embeddings = embeddings + position_embeddings
|
166 |
+
|
167 |
+
if self.layer_norm is not None:
|
168 |
+
embeddings = self.layer_norm(embeddings)
|
169 |
+
if attention_mask is not None:
|
170 |
+
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
|
171 |
+
embeddings.dtype
|
172 |
+
)
|
173 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
174 |
+
# embeddings = self.dropout(embeddings)
|
175 |
+
return embeddings
|
176 |
+
|
177 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
178 |
+
input_shape = inputs_embeds.size()[:-1]
|
179 |
+
sequence_length = input_shape[1]
|
180 |
+
|
181 |
+
position_ids = torch.arange(
|
182 |
+
self.padding_idx + 1,
|
183 |
+
sequence_length + self.padding_idx + 1,
|
184 |
+
dtype=torch.long,
|
185 |
+
device=inputs_embeds.device,
|
186 |
+
)
|
187 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
188 |
+
|
189 |
+
|
190 |
+
class ProPrimeSelfAttention(nn.Module):
|
191 |
+
def __init__(self, config, position_embedding_type=None):
|
192 |
+
super().__init__()
|
193 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
194 |
+
config, "embedding_size"
|
195 |
+
):
|
196 |
+
raise ValueError(
|
197 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
198 |
+
f"heads ({config.num_attention_heads})"
|
199 |
+
)
|
200 |
+
|
201 |
+
self.num_attention_heads = config.num_attention_heads
|
202 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
203 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
204 |
+
|
205 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
206 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
207 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
208 |
+
|
209 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
210 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
211 |
+
config, "position_embedding_type", "absolute"
|
212 |
+
)
|
213 |
+
self.rotary_embeddings = None
|
214 |
+
if (
|
215 |
+
self.position_embedding_type == "relative_key"
|
216 |
+
or self.position_embedding_type == "relative_key_query"
|
217 |
+
):
|
218 |
+
self.max_position_embeddings = config.max_position_embeddings
|
219 |
+
self.distance_embedding = nn.Embedding(
|
220 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
221 |
+
)
|
222 |
+
elif self.position_embedding_type == "rotary":
|
223 |
+
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
224 |
+
self.flash_attention = config.flash_attention
|
225 |
+
self.is_decoder = config.is_decoder
|
226 |
+
self.config = config
|
227 |
+
|
228 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
229 |
+
new_x_shape = x.size()[:-1] + (
|
230 |
+
self.num_attention_heads,
|
231 |
+
self.attention_head_size,
|
232 |
+
)
|
233 |
+
x = x.view(new_x_shape)
|
234 |
+
return x.permute(0, 2, 1, 3)
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states: torch.Tensor,
|
239 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
240 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
241 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
242 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
243 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
244 |
+
output_attentions: Optional[bool] = False,
|
245 |
+
) -> Tuple[torch.Tensor]:
|
246 |
+
mixed_query_layer = self.query(hidden_states)
|
247 |
+
|
248 |
+
# If this is instantiated as a cross-attention module, the keys
|
249 |
+
# and values come from an encoder; the attention mask needs to be
|
250 |
+
# such that the encoder's padding tokens are not attended to.
|
251 |
+
is_cross_attention = encoder_hidden_states is not None
|
252 |
+
|
253 |
+
if is_cross_attention and past_key_value is not None:
|
254 |
+
# reuse k,v, cross_attentions
|
255 |
+
key_layer = past_key_value[0]
|
256 |
+
value_layer = past_key_value[1]
|
257 |
+
attention_mask = encoder_attention_mask
|
258 |
+
elif is_cross_attention:
|
259 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
260 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
261 |
+
attention_mask = encoder_attention_mask
|
262 |
+
elif past_key_value is not None:
|
263 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
264 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
265 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
266 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
267 |
+
else:
|
268 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
269 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
270 |
+
|
271 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
272 |
+
|
273 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
274 |
+
|
275 |
+
if self.is_decoder:
|
276 |
+
past_key_value = (key_layer, value_layer)
|
277 |
+
|
278 |
+
if self.position_embedding_type == "rotary":
|
279 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
280 |
+
|
281 |
+
if not self.flash_attention:
|
282 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
283 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
284 |
+
|
285 |
+
if (
|
286 |
+
self.position_embedding_type == "relative_key"
|
287 |
+
or self.position_embedding_type == "relative_key_query"
|
288 |
+
):
|
289 |
+
seq_length = hidden_states.size()[1]
|
290 |
+
position_ids_l = torch.arange(
|
291 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
292 |
+
).view(-1, 1)
|
293 |
+
position_ids_r = torch.arange(
|
294 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
295 |
+
).view(1, -1)
|
296 |
+
distance = position_ids_l - position_ids_r
|
297 |
+
positional_embedding = self.distance_embedding(
|
298 |
+
distance + self.max_position_embeddings - 1
|
299 |
+
)
|
300 |
+
positional_embedding = positional_embedding.to(
|
301 |
+
dtype=query_layer.dtype
|
302 |
+
) # fp16 compatibility
|
303 |
+
|
304 |
+
if self.position_embedding_type == "relative_key":
|
305 |
+
relative_position_scores = torch.einsum(
|
306 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
307 |
+
)
|
308 |
+
attention_scores = attention_scores + relative_position_scores
|
309 |
+
elif self.position_embedding_type == "relative_key_query":
|
310 |
+
relative_position_scores_query = torch.einsum(
|
311 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
312 |
+
)
|
313 |
+
relative_position_scores_key = torch.einsum(
|
314 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
315 |
+
)
|
316 |
+
attention_scores = (
|
317 |
+
attention_scores
|
318 |
+
+ relative_position_scores_query
|
319 |
+
+ relative_position_scores_key
|
320 |
+
)
|
321 |
+
|
322 |
+
if attention_mask is not None:
|
323 |
+
attention_scores = attention_scores + attention_mask
|
324 |
+
|
325 |
+
# Normalize the attention scores to probabilities.
|
326 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
327 |
+
|
328 |
+
# This is actually dropping out entire tokens to attend to, which might
|
329 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
330 |
+
attention_probs = self.dropout(attention_probs)
|
331 |
+
|
332 |
+
# Mask heads if we want to
|
333 |
+
if head_mask is not None:
|
334 |
+
attention_probs = attention_probs * head_mask
|
335 |
+
|
336 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
337 |
+
else:
|
338 |
+
if self.training:
|
339 |
+
context_layer = scaled_dot_product_attention(
|
340 |
+
query_layer,
|
341 |
+
key_layer,
|
342 |
+
value_layer,
|
343 |
+
attn_mask=attention_mask,
|
344 |
+
dropout_p=self.config.attention_probs_dropout_prob,
|
345 |
+
scale=1, # we have query_layer = query_layer * self.attention_head_size**-0.5
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
context_layer = scaled_dot_product_attention(
|
349 |
+
query_layer,
|
350 |
+
key_layer,
|
351 |
+
value_layer,
|
352 |
+
attn_mask=attention_mask,
|
353 |
+
scale=1, # we have query_layer = query_layer * self.attention_head_size**-0.5
|
354 |
+
)
|
355 |
+
|
356 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
357 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
358 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
359 |
+
|
360 |
+
outputs = (
|
361 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
362 |
+
)
|
363 |
+
|
364 |
+
if self.is_decoder:
|
365 |
+
outputs = outputs + (past_key_value,)
|
366 |
+
return outputs
|
367 |
+
|
368 |
+
|
369 |
+
class ProPrimeSelfOutput(nn.Module):
|
370 |
+
def __init__(self, config):
|
371 |
+
super().__init__()
|
372 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
373 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
374 |
+
|
375 |
+
def forward(self, hidden_states, input_tensor):
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.dropout(hidden_states)
|
378 |
+
hidden_states = hidden_states + input_tensor
|
379 |
+
return hidden_states
|
380 |
+
|
381 |
+
|
382 |
+
class ProPrimeAttention(nn.Module):
|
383 |
+
def __init__(self, config):
|
384 |
+
super().__init__()
|
385 |
+
self.self = ProPrimeSelfAttention(config)
|
386 |
+
self.output = ProPrimeSelfOutput(config)
|
387 |
+
self.pruned_heads = set()
|
388 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
389 |
+
|
390 |
+
def prune_heads(self, heads):
|
391 |
+
if len(heads) == 0:
|
392 |
+
return
|
393 |
+
heads, index = find_pruneable_heads_and_indices(
|
394 |
+
heads,
|
395 |
+
self.self.num_attention_heads,
|
396 |
+
self.self.attention_head_size,
|
397 |
+
self.pruned_heads,
|
398 |
+
)
|
399 |
+
|
400 |
+
# Prune linear layers
|
401 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
402 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
403 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
404 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
405 |
+
|
406 |
+
# Update hyper params and store pruned heads
|
407 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
408 |
+
self.self.all_head_size = (
|
409 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
410 |
+
)
|
411 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
hidden_states,
|
416 |
+
attention_mask=None,
|
417 |
+
head_mask=None,
|
418 |
+
encoder_hidden_states=None,
|
419 |
+
encoder_attention_mask=None,
|
420 |
+
past_key_value=None,
|
421 |
+
output_attentions=False,
|
422 |
+
):
|
423 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
424 |
+
self_outputs = self.self(
|
425 |
+
hidden_states_ln,
|
426 |
+
attention_mask,
|
427 |
+
head_mask,
|
428 |
+
encoder_hidden_states,
|
429 |
+
encoder_attention_mask,
|
430 |
+
past_key_value,
|
431 |
+
output_attentions,
|
432 |
+
)
|
433 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
434 |
+
outputs = (attention_output,) + self_outputs[
|
435 |
+
1:
|
436 |
+
] # add attentions if we output them
|
437 |
+
return outputs
|
438 |
+
|
439 |
+
|
440 |
+
class ProPrimeIntermediate(nn.Module):
|
441 |
+
def __init__(self, config):
|
442 |
+
super().__init__()
|
443 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
444 |
+
|
445 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
446 |
+
hidden_states = self.dense(hidden_states)
|
447 |
+
hidden_states = gelu(hidden_states)
|
448 |
+
return hidden_states
|
449 |
+
|
450 |
+
|
451 |
+
class ProPrimeOutput(nn.Module):
|
452 |
+
def __init__(self, config):
|
453 |
+
super().__init__()
|
454 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
455 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
456 |
+
|
457 |
+
def forward(self, hidden_states, input_tensor):
|
458 |
+
hidden_states = self.dense(hidden_states)
|
459 |
+
hidden_states = self.dropout(hidden_states)
|
460 |
+
hidden_states = hidden_states + input_tensor
|
461 |
+
return hidden_states
|
462 |
+
|
463 |
+
|
464 |
+
class ProPrimeLayer(nn.Module):
|
465 |
+
def __init__(self, config):
|
466 |
+
super().__init__()
|
467 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
468 |
+
self.seq_len_dim = 1
|
469 |
+
self.attention = ProPrimeAttention(config)
|
470 |
+
self.is_decoder = config.is_decoder
|
471 |
+
self.add_cross_attention = config.add_cross_attention
|
472 |
+
if self.add_cross_attention:
|
473 |
+
if not self.is_decoder:
|
474 |
+
raise RuntimeError(
|
475 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
476 |
+
)
|
477 |
+
self.crossattention = ProPrimeAttention(config)
|
478 |
+
self.intermediate = ProPrimeIntermediate(config)
|
479 |
+
self.output = ProPrimeOutput(config)
|
480 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
hidden_states,
|
485 |
+
attention_mask=None,
|
486 |
+
head_mask=None,
|
487 |
+
encoder_hidden_states=None,
|
488 |
+
encoder_attention_mask=None,
|
489 |
+
past_key_value=None,
|
490 |
+
output_attentions=False,
|
491 |
+
):
|
492 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
493 |
+
self_attn_past_key_value = (
|
494 |
+
past_key_value[:2] if past_key_value is not None else None
|
495 |
+
)
|
496 |
+
self_attention_outputs = self.attention(
|
497 |
+
hidden_states,
|
498 |
+
attention_mask,
|
499 |
+
head_mask,
|
500 |
+
output_attentions=output_attentions,
|
501 |
+
past_key_value=self_attn_past_key_value,
|
502 |
+
)
|
503 |
+
attention_output = self_attention_outputs[0]
|
504 |
+
|
505 |
+
# if decoder, the last output is tuple of self-attn cache
|
506 |
+
if self.is_decoder:
|
507 |
+
outputs = self_attention_outputs[1:-1]
|
508 |
+
present_key_value = self_attention_outputs[-1]
|
509 |
+
else:
|
510 |
+
outputs = self_attention_outputs[
|
511 |
+
1:
|
512 |
+
] # add self attentions if we output attention weights
|
513 |
+
|
514 |
+
cross_attn_present_key_value = None
|
515 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
516 |
+
if not hasattr(self, "crossattention"):
|
517 |
+
raise AttributeError(
|
518 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
519 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
520 |
+
)
|
521 |
+
|
522 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
523 |
+
cross_attn_past_key_value = (
|
524 |
+
past_key_value[-2:] if past_key_value is not None else None
|
525 |
+
)
|
526 |
+
cross_attention_outputs = self.crossattention(
|
527 |
+
attention_output,
|
528 |
+
attention_mask,
|
529 |
+
head_mask,
|
530 |
+
encoder_hidden_states,
|
531 |
+
encoder_attention_mask,
|
532 |
+
cross_attn_past_key_value,
|
533 |
+
output_attentions,
|
534 |
+
)
|
535 |
+
attention_output = cross_attention_outputs[0]
|
536 |
+
outputs = (
|
537 |
+
outputs + cross_attention_outputs[1:-1]
|
538 |
+
) # add cross attentions if we output attention weights
|
539 |
+
|
540 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
541 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
542 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
543 |
+
|
544 |
+
layer_output = self.feed_forward_chunk(attention_output)
|
545 |
+
|
546 |
+
outputs = (layer_output,) + outputs
|
547 |
+
|
548 |
+
# if decoder, return the attn key/values as the last output
|
549 |
+
if self.is_decoder:
|
550 |
+
outputs = outputs + (present_key_value,)
|
551 |
+
return outputs
|
552 |
+
|
553 |
+
def feed_forward_chunk(self, attention_output):
|
554 |
+
attention_output_ln = self.LayerNorm(attention_output)
|
555 |
+
intermediate_output = self.intermediate(attention_output_ln)
|
556 |
+
layer_output = self.output(intermediate_output, attention_output)
|
557 |
+
return layer_output
|
558 |
+
|
559 |
+
|
560 |
+
class ProPrimeEncoder(nn.Module):
|
561 |
+
def __init__(self, config):
|
562 |
+
super().__init__()
|
563 |
+
self.config = config
|
564 |
+
self.layer = nn.ModuleList(
|
565 |
+
[ProPrimeLayer(config) for _ in range(config.num_hidden_layers)]
|
566 |
+
)
|
567 |
+
self.emb_layer_norm_after = nn.LayerNorm(
|
568 |
+
config.hidden_size, eps=config.layer_norm_eps
|
569 |
+
)
|
570 |
+
self.gradient_checkpointing = False
|
571 |
+
|
572 |
+
def forward(
|
573 |
+
self,
|
574 |
+
hidden_states,
|
575 |
+
attention_mask=None,
|
576 |
+
head_mask=None,
|
577 |
+
encoder_hidden_states=None,
|
578 |
+
encoder_attention_mask=None,
|
579 |
+
past_key_values=None,
|
580 |
+
use_cache=None,
|
581 |
+
output_attentions=False,
|
582 |
+
output_hidden_states=False,
|
583 |
+
return_dict=True,
|
584 |
+
):
|
585 |
+
if self.gradient_checkpointing and self.training:
|
586 |
+
if use_cache:
|
587 |
+
logger.warning_once(
|
588 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
589 |
+
"`use_cache=False`..."
|
590 |
+
)
|
591 |
+
use_cache = False
|
592 |
+
all_hidden_states = () if output_hidden_states else None
|
593 |
+
all_self_attentions = () if output_attentions else None
|
594 |
+
all_cross_attentions = (
|
595 |
+
() if output_attentions and self.config.add_cross_attention else None
|
596 |
+
)
|
597 |
+
|
598 |
+
next_decoder_cache = () if use_cache else None
|
599 |
+
for i, layer_module in enumerate(self.layer):
|
600 |
+
if output_hidden_states:
|
601 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
602 |
+
|
603 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
604 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
605 |
+
|
606 |
+
if self.gradient_checkpointing and self.training:
|
607 |
+
layer_outputs = self._gradient_checkpointing_func(
|
608 |
+
layer_module.__call__,
|
609 |
+
hidden_states,
|
610 |
+
attention_mask,
|
611 |
+
layer_head_mask,
|
612 |
+
encoder_hidden_states,
|
613 |
+
encoder_attention_mask,
|
614 |
+
past_key_value,
|
615 |
+
output_attentions,
|
616 |
+
)
|
617 |
+
else:
|
618 |
+
layer_outputs = layer_module(
|
619 |
+
hidden_states,
|
620 |
+
attention_mask,
|
621 |
+
layer_head_mask,
|
622 |
+
encoder_hidden_states,
|
623 |
+
encoder_attention_mask,
|
624 |
+
past_key_value,
|
625 |
+
output_attentions,
|
626 |
+
)
|
627 |
+
|
628 |
+
hidden_states = layer_outputs[0]
|
629 |
+
if use_cache:
|
630 |
+
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
|
631 |
+
if output_attentions:
|
632 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
633 |
+
if self.config.add_cross_attention:
|
634 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
635 |
+
|
636 |
+
if self.emb_layer_norm_after:
|
637 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
638 |
+
|
639 |
+
if output_hidden_states:
|
640 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
641 |
+
|
642 |
+
if not return_dict:
|
643 |
+
return tuple(
|
644 |
+
v
|
645 |
+
for v in [
|
646 |
+
hidden_states,
|
647 |
+
next_decoder_cache,
|
648 |
+
all_hidden_states,
|
649 |
+
all_self_attentions,
|
650 |
+
all_cross_attentions,
|
651 |
+
]
|
652 |
+
if v is not None
|
653 |
+
)
|
654 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
655 |
+
last_hidden_state=hidden_states,
|
656 |
+
past_key_values=next_decoder_cache,
|
657 |
+
hidden_states=all_hidden_states,
|
658 |
+
attentions=all_self_attentions,
|
659 |
+
cross_attentions=all_cross_attentions,
|
660 |
+
)
|
661 |
+
|
662 |
+
|
663 |
+
class ProPrimePreTrainedModel(PreTrainedModel):
|
664 |
+
"""
|
665 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
666 |
+
models.
|
667 |
+
"""
|
668 |
+
|
669 |
+
config_class = ProPrimeConfig
|
670 |
+
base_model_prefix = "proprime"
|
671 |
+
supports_gradient_checkpointing = True
|
672 |
+
_no_split_modules = [
|
673 |
+
"ProPrimeLayer",
|
674 |
+
"ProPrimeEmbeddings",
|
675 |
+
]
|
676 |
+
|
677 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
678 |
+
def _init_weights(self, module):
|
679 |
+
"""Initialize the weights"""
|
680 |
+
if isinstance(module, nn.Linear):
|
681 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
682 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
683 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
684 |
+
if module.bias is not None:
|
685 |
+
module.bias.data.zero_()
|
686 |
+
elif isinstance(module, nn.Embedding):
|
687 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
688 |
+
if module.padding_idx is not None:
|
689 |
+
module.weight.data[module.padding_idx].zero_()
|
690 |
+
elif isinstance(module, nn.LayerNorm):
|
691 |
+
module.bias.data.zero_()
|
692 |
+
module.weight.data.fill_(1.0)
|
693 |
+
|
694 |
+
|
695 |
+
class ProPrimeModel(ProPrimePreTrainedModel):
|
696 |
+
def __init__(self, config, add_pooling_layer=True):
|
697 |
+
super().__init__(config)
|
698 |
+
self.config = config
|
699 |
+
self.embeddings = ProPrimeEmbeddings(config)
|
700 |
+
self.encoder = ProPrimeEncoder(config)
|
701 |
+
self.post_init()
|
702 |
+
|
703 |
+
def get_input_embeddings(self):
|
704 |
+
return self.embeddings.word_embeddings
|
705 |
+
|
706 |
+
def set_input_embeddings(self, value):
|
707 |
+
self.embeddings.word_embeddings = value
|
708 |
+
|
709 |
+
def _prune_heads(self, heads_to_prune):
|
710 |
+
"""
|
711 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
712 |
+
class PreTrainedModel
|
713 |
+
"""
|
714 |
+
for layer, heads in heads_to_prune.items():
|
715 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
716 |
+
|
717 |
+
def forward(
|
718 |
+
self,
|
719 |
+
input_ids: Optional[torch.Tensor] = None,
|
720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
721 |
+
position_ids: Optional[torch.Tensor] = None,
|
722 |
+
head_mask: Optional[torch.Tensor] = None,
|
723 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
724 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
725 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
726 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
727 |
+
use_cache: Optional[bool] = None,
|
728 |
+
output_attentions: Optional[bool] = None,
|
729 |
+
output_hidden_states: Optional[bool] = None,
|
730 |
+
return_dict: Optional[bool] = None,
|
731 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
732 |
+
output_attentions = (
|
733 |
+
output_attentions
|
734 |
+
if output_attentions is not None
|
735 |
+
else self.config.output_attentions
|
736 |
+
)
|
737 |
+
output_hidden_states = (
|
738 |
+
output_hidden_states
|
739 |
+
if output_hidden_states is not None
|
740 |
+
else self.config.output_hidden_states
|
741 |
+
)
|
742 |
+
return_dict = (
|
743 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
744 |
+
)
|
745 |
+
|
746 |
+
if self.config.is_decoder:
|
747 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
748 |
+
else:
|
749 |
+
use_cache = False
|
750 |
+
|
751 |
+
if input_ids is not None and inputs_embeds is not None:
|
752 |
+
raise ValueError(
|
753 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
754 |
+
)
|
755 |
+
elif input_ids is not None:
|
756 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
757 |
+
input_shape = input_ids.size()
|
758 |
+
elif inputs_embeds is not None:
|
759 |
+
input_shape = inputs_embeds.size()[:-1]
|
760 |
+
else:
|
761 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
762 |
+
|
763 |
+
batch_size, seq_length = input_shape
|
764 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
765 |
+
|
766 |
+
# past_key_values_length
|
767 |
+
past_key_values_length = (
|
768 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
769 |
+
)
|
770 |
+
|
771 |
+
if attention_mask is None:
|
772 |
+
attention_mask = torch.ones(
|
773 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
774 |
+
)
|
775 |
+
|
776 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
777 |
+
attention_mask, input_shape
|
778 |
+
)
|
779 |
+
|
780 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
781 |
+
encoder_batch_size, encoder_sequence_length, _ = (
|
782 |
+
encoder_hidden_states.size()
|
783 |
+
)
|
784 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
785 |
+
if encoder_attention_mask is None:
|
786 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
787 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
788 |
+
encoder_attention_mask
|
789 |
+
)
|
790 |
+
else:
|
791 |
+
encoder_extended_attention_mask = None
|
792 |
+
|
793 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
794 |
+
|
795 |
+
embedding_output = self.embeddings(
|
796 |
+
input_ids=input_ids,
|
797 |
+
position_ids=position_ids,
|
798 |
+
attention_mask=attention_mask,
|
799 |
+
inputs_embeds=inputs_embeds,
|
800 |
+
past_key_values_length=past_key_values_length,
|
801 |
+
)
|
802 |
+
encoder_outputs = self.encoder(
|
803 |
+
embedding_output,
|
804 |
+
attention_mask=extended_attention_mask,
|
805 |
+
head_mask=head_mask,
|
806 |
+
encoder_hidden_states=encoder_hidden_states,
|
807 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
808 |
+
past_key_values=past_key_values,
|
809 |
+
use_cache=use_cache,
|
810 |
+
output_attentions=output_attentions,
|
811 |
+
output_hidden_states=output_hidden_states,
|
812 |
+
return_dict=return_dict,
|
813 |
+
)
|
814 |
+
sequence_output = encoder_outputs[0]
|
815 |
+
|
816 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
817 |
+
last_hidden_state=sequence_output,
|
818 |
+
past_key_values=encoder_outputs.past_key_values,
|
819 |
+
hidden_states=encoder_outputs.hidden_states,
|
820 |
+
attentions=encoder_outputs.attentions,
|
821 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
822 |
+
)
|
823 |
+
|
824 |
+
|
825 |
+
class ProPrimeForMaskedLM(ProPrimePreTrainedModel):
|
826 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
827 |
+
|
828 |
+
def __init__(self, config):
|
829 |
+
super().__init__(config)
|
830 |
+
|
831 |
+
if config.is_decoder:
|
832 |
+
logger.warning(
|
833 |
+
"If you want to use `ProPrimeForMaskedLM` make sure `config.is_decoder=False` for "
|
834 |
+
"bi-directional self-attention."
|
835 |
+
)
|
836 |
+
|
837 |
+
self.pro_prime = ProPrimeModel(config, add_pooling_layer=False)
|
838 |
+
self.lm_head = ProPrimeLMHead(config)
|
839 |
+
self.init_weights()
|
840 |
+
|
841 |
+
def get_input_embeddings(self):
|
842 |
+
return self.pro_prime.embeddings.word_embeddings
|
843 |
+
|
844 |
+
def get_output_embeddings(self):
|
845 |
+
return self.lm_head.decoder
|
846 |
+
|
847 |
+
def set_output_embeddings(self, new_embeddings):
|
848 |
+
self.lm_head.decoder = new_embeddings
|
849 |
+
|
850 |
+
def forward(
|
851 |
+
self,
|
852 |
+
input_ids: Optional[torch.LongTensor] = None,
|
853 |
+
attention_mask: Optional[torch.Tensor] = None,
|
854 |
+
position_ids: Optional[torch.LongTensor] = None,
|
855 |
+
head_mask: Optional[torch.Tensor] = None,
|
856 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
857 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
858 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
859 |
+
labels: Optional[torch.LongTensor] = None,
|
860 |
+
output_attentions: Optional[bool] = None,
|
861 |
+
output_hidden_states: Optional[bool] = None,
|
862 |
+
return_dict: Optional[bool] = None,
|
863 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
864 |
+
return_dict = (
|
865 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
866 |
+
)
|
867 |
+
|
868 |
+
outputs = self.pro_prime(
|
869 |
+
input_ids,
|
870 |
+
attention_mask=attention_mask,
|
871 |
+
position_ids=position_ids,
|
872 |
+
head_mask=head_mask,
|
873 |
+
inputs_embeds=inputs_embeds,
|
874 |
+
encoder_hidden_states=encoder_hidden_states,
|
875 |
+
encoder_attention_mask=encoder_attention_mask,
|
876 |
+
output_attentions=output_attentions,
|
877 |
+
output_hidden_states=output_hidden_states,
|
878 |
+
return_dict=return_dict,
|
879 |
+
)
|
880 |
+
sequence_output = outputs[0]
|
881 |
+
prediction_scores = self.lm_head(sequence_output)
|
882 |
+
|
883 |
+
masked_lm_loss = None
|
884 |
+
if labels is not None:
|
885 |
+
loss_fct = CrossEntropyLoss()
|
886 |
+
|
887 |
+
labels = labels.to(prediction_scores.device)
|
888 |
+
masked_lm_loss = loss_fct(
|
889 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
890 |
+
)
|
891 |
+
|
892 |
+
if not return_dict:
|
893 |
+
output = (prediction_scores,) + outputs[2:]
|
894 |
+
return (
|
895 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
896 |
+
)
|
897 |
+
|
898 |
+
return MaskedLMOutput(
|
899 |
+
loss=masked_lm_loss,
|
900 |
+
logits=prediction_scores,
|
901 |
+
hidden_states=outputs.hidden_states,
|
902 |
+
attentions=outputs.attentions,
|
903 |
+
)
|
904 |
+
|
905 |
+
|
906 |
+
class ProPrimeLMHead(nn.Module):
|
907 |
+
|
908 |
+
def __init__(self, config):
|
909 |
+
super().__init__()
|
910 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
911 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
912 |
+
|
913 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
914 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
915 |
+
|
916 |
+
def forward(self, features, **kwargs):
|
917 |
+
x = self.dense(features)
|
918 |
+
x = gelu(x)
|
919 |
+
x = self.layer_norm(x)
|
920 |
+
|
921 |
+
# project back to size of vocabulary with bias
|
922 |
+
x = self.decoder(x) + self.bias
|
923 |
+
return x
|
924 |
+
|
925 |
+
|
926 |
+
def create_position_ids_from_input_ids(
|
927 |
+
input_ids, padding_idx, past_key_values_length=0
|
928 |
+
):
|
929 |
+
"""
|
930 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
931 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
x: torch.Tensor x:
|
935 |
+
|
936 |
+
Returns: torch.Tensor
|
937 |
+
"""
|
938 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
939 |
+
mask = input_ids.ne(padding_idx).int()
|
940 |
+
incremental_indices = (
|
941 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
942 |
+
) * mask
|
943 |
+
return incremental_indices.long() + padding_idx
|
944 |
+
|
945 |
+
|
946 |
+
# POOLING_HEAD
|
947 |
+
class MaskedConv1d(nn.Conv1d):
|
948 |
+
"""A masked 1-dimensional convolution layer.
|
949 |
+
|
950 |
+
Takes the same arguments as torch.nn.Conv1D, except that the padding is set automatically.
|
951 |
+
|
952 |
+
Shape:
|
953 |
+
Input: (N, L, in_channels)
|
954 |
+
input_mask: (N, L, 1), optional
|
955 |
+
Output: (N, L, out_channels)
|
956 |
+
"""
|
957 |
+
|
958 |
+
def __init__(
|
959 |
+
self,
|
960 |
+
in_channels: int,
|
961 |
+
out_channels: int,
|
962 |
+
kernel_size: int,
|
963 |
+
stride: int = 1,
|
964 |
+
dilation: int = 1,
|
965 |
+
groups: int = 1,
|
966 |
+
bias: bool = True,
|
967 |
+
):
|
968 |
+
"""
|
969 |
+
:param in_channels: input channels
|
970 |
+
:param out_channels: output channels
|
971 |
+
:param kernel_size: the kernel width
|
972 |
+
:param stride: filter shift
|
973 |
+
:param dilation: dilation factor
|
974 |
+
:param groups: perform depth-wise convolutions
|
975 |
+
:param bias: adds learnable bias to output
|
976 |
+
"""
|
977 |
+
padding = dilation * (kernel_size - 1) // 2
|
978 |
+
super().__init__(
|
979 |
+
in_channels,
|
980 |
+
out_channels,
|
981 |
+
kernel_size,
|
982 |
+
stride=stride,
|
983 |
+
dilation=dilation,
|
984 |
+
groups=groups,
|
985 |
+
bias=bias,
|
986 |
+
padding=padding,
|
987 |
+
)
|
988 |
+
|
989 |
+
def forward(self, x, input_mask=None):
|
990 |
+
if input_mask is not None:
|
991 |
+
x = x * input_mask
|
992 |
+
return super().forward(x.transpose(1, 2)).transpose(1, 2)
|
993 |
+
|
994 |
+
|
995 |
+
class Attention1d(nn.Module):
|
996 |
+
def __init__(self, config):
|
997 |
+
super().__init__()
|
998 |
+
self.layer = MaskedConv1d(config.hidden_size, 1, 1)
|
999 |
+
self.out = nn.Linear(config.hidden_size, config.hidden_size)
|
1000 |
+
|
1001 |
+
def forward(self, x, input_mask=None):
|
1002 |
+
batch_szie = x.shape[0]
|
1003 |
+
attn = self.layer(x)
|
1004 |
+
attn = attn.view(batch_szie, -1)
|
1005 |
+
if input_mask is not None:
|
1006 |
+
attn = attn.masked_fill_(
|
1007 |
+
~input_mask.view(batch_szie, -1).bool(), float("-inf")
|
1008 |
+
)
|
1009 |
+
attn = F.softmax(attn, dim=-1).view(batch_szie, -1, 1)
|
1010 |
+
out = (attn * x).sum(dim=1)
|
1011 |
+
out = self.out(out)
|
1012 |
+
return out
|
1013 |
+
|
1014 |
+
|
1015 |
+
class FFN1d(nn.Module):
|
1016 |
+
def __init__(self, config):
|
1017 |
+
super().__init__()
|
1018 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
1019 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
1020 |
+
self.act = nn.GELU()
|
1021 |
+
|
1022 |
+
def forward(self, x):
|
1023 |
+
x = self.fc1(x)
|
1024 |
+
x = self.act(x)
|
1025 |
+
x = self.fc2(x)
|
1026 |
+
return x
|
1027 |
+
|
1028 |
+
|
1029 |
+
class Attention1dPooling(nn.Module):
|
1030 |
+
"""Outputs of the model with the attention1d"""
|
1031 |
+
|
1032 |
+
def __init__(
|
1033 |
+
self, config
|
1034 |
+
): # [batch x sequence(751) x embedding (1280)] --> [batch x embedding] --> [batch x 1]
|
1035 |
+
super(Attention1dPooling, self).__init__()
|
1036 |
+
self.attention1d = Attention1d(config)
|
1037 |
+
self.ffn = FFN1d(config)
|
1038 |
+
# self.norm1 = nn.BatchNorm1d(config.hidden_size)
|
1039 |
+
# self.norm2 = nn.BatchNorm1d(config.hidden_size)
|
1040 |
+
self.dropout1 = nn.Dropout(config.hidden_dropout_prob)
|
1041 |
+
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
1042 |
+
|
1043 |
+
def forward(self, x, input_mask):
|
1044 |
+
attn_out = self.attention1d(x, input_mask=input_mask.unsqueeze(-1))
|
1045 |
+
x = self.dropout1(attn_out)
|
1046 |
+
# x = self.norm1(x)
|
1047 |
+
ffn_out = self.ffn(x)
|
1048 |
+
x = x + self.dropout2(ffn_out)
|
1049 |
+
# x = self.norm2(x)
|
1050 |
+
return x
|
1051 |
+
|
1052 |
+
|
1053 |
+
@dataclass
|
1054 |
+
class MaskedLMOutput(ModelOutput):
|
1055 |
+
loss: Optional[torch.FloatTensor] = None
|
1056 |
+
logits: torch.FloatTensor = None
|
1057 |
+
sequence_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
1058 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
1059 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
1060 |
+
|
1061 |
+
|
1062 |
+
class ProPrimeMV(ProPrimePreTrainedModel):
|
1063 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
1064 |
+
|
1065 |
+
def __init__(self, config):
|
1066 |
+
super().__init__(config)
|
1067 |
+
self.pro_prime = ProPrimeModel(config, add_pooling_layer=False)
|
1068 |
+
self.lm_head = ProPrimeLMHead(config)
|
1069 |
+
self.sequence_pooling = Attention1dPooling(config)
|
1070 |
+
self.value_projection = nn.Sequential(
|
1071 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
1072 |
+
nn.Tanh(),
|
1073 |
+
nn.Linear(config.hidden_size, 1),
|
1074 |
+
)
|
1075 |
+
self.init_weights()
|
1076 |
+
|
1077 |
+
def get_input_embeddings(self):
|
1078 |
+
return self.pro_prime.embeddings.word_embeddings
|
1079 |
+
|
1080 |
+
def get_output_embeddings(self):
|
1081 |
+
return self.lm_head.decoder
|
1082 |
+
|
1083 |
+
def set_output_embeddings(self, new_embeddings):
|
1084 |
+
self.lm_head.decoder = new_embeddings
|
1085 |
+
|
1086 |
+
def forward(
|
1087 |
+
self,
|
1088 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1089 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1090 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1091 |
+
head_mask: Optional[torch.Tensor] = None,
|
1092 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1093 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1094 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1095 |
+
labels: Optional[torch.LongTensor] = None,
|
1096 |
+
values: Optional[torch.FloatTensor] = None,
|
1097 |
+
output_attentions: Optional[bool] = None,
|
1098 |
+
output_hidden_states: Optional[bool] = None,
|
1099 |
+
return_dict: Optional[bool] = None,
|
1100 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1101 |
+
return_dict = (
|
1102 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
outputs = self.pro_prime(
|
1106 |
+
input_ids,
|
1107 |
+
attention_mask=attention_mask,
|
1108 |
+
position_ids=position_ids,
|
1109 |
+
head_mask=head_mask,
|
1110 |
+
inputs_embeds=inputs_embeds,
|
1111 |
+
encoder_hidden_states=encoder_hidden_states,
|
1112 |
+
encoder_attention_mask=encoder_attention_mask,
|
1113 |
+
output_attentions=output_attentions,
|
1114 |
+
output_hidden_states=output_hidden_states,
|
1115 |
+
return_dict=return_dict,
|
1116 |
+
)
|
1117 |
+
sequence_output = outputs[0]
|
1118 |
+
prediction_scores = self.lm_head(sequence_output)
|
1119 |
+
|
1120 |
+
masked_lm_loss = None
|
1121 |
+
if labels is not None:
|
1122 |
+
loss_fct = CrossEntropyLoss()
|
1123 |
+
|
1124 |
+
labels = labels.to(prediction_scores.device)
|
1125 |
+
masked_lm_loss = loss_fct(
|
1126 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
if not return_dict:
|
1130 |
+
output = (prediction_scores,) + outputs[2:]
|
1131 |
+
return (
|
1132 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
sequence_states = self.sequence_pooling(sequence_output, attention_mask)
|
1136 |
+
predicted_values = self.value_projection(sequence_states)
|
1137 |
+
values = values.to(predicted_values.dtype)
|
1138 |
+
values = values.reshape(-1, 1)
|
1139 |
+
value_loss = nn.MSELoss()(predicted_values, values)
|
1140 |
+
|
1141 |
+
return MaskedLMOutput(
|
1142 |
+
loss=masked_lm_loss + value_loss,
|
1143 |
+
logits=prediction_scores,
|
1144 |
+
hidden_states=outputs.hidden_states,
|
1145 |
+
sequence_hidden_states=sequence_states,
|
1146 |
+
attentions=outputs.attentions,
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
|
1150 |
+
ProPrimeModel.register_for_auto_class("AutoModel")
|
1151 |
+
ProPrimeForMaskedLM.register_for_auto_class("AutoModelForMaskedLM")
|
1152 |
+
|
1153 |
+
|
1154 |
+
if __name__ == "__main__":
|
1155 |
+
from ProPrime.tokenization_proprime import ProPrimeTokenizer
|
1156 |
+
from transformers.models.esm import EsmForMaskedLM
|
1157 |
+
|
1158 |
+
tokenizer = ProPrimeTokenizer("ProPrime/vocab.txt")
|
1159 |
+
config = ProPrimeConfig()
|
1160 |
+
model = ProPrimeMV(config)
|
1161 |
+
model.eval()
|
1162 |
+
s = [
|
1163 |
+
"MSFSHJGIOSJGKLOSJGSLKJWRPRQR",
|
1164 |
+
"MSRPRQR",
|
1165 |
+
"MSFSHJKLOSJGSLKJWRPRQR",
|
1166 |
+
"MSFSHJGIOSJGKLOSJG",
|
1167 |
+
]
|
1168 |
+
input_ids = tokenizer(s, return_tensors="pt", padding=True).input_ids[:1, ]
|
1169 |
+
attention_mask = tokenizer(s, return_tensors="pt", padding=True).attention_mask[:1, ]
|
1170 |
+
values = torch.tensor([1.0, ])
|
1171 |
+
|
1172 |
+
print(
|
1173 |
+
model.forward(
|
1174 |
+
input_ids=input_ids,
|
1175 |
+
attention_mask=attention_mask,
|
1176 |
+
values=values,
|
1177 |
+
labels=input_ids,
|
1178 |
+
)
|
1179 |
+
)
|