from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class ProPrimeConfig(PretrainedConfig): model_type = "proprime" def __init__( self, vocab_size=33, mask_token_id=32, pad_token_id=1, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type="rotary", use_cache=True, emb_layer_norm_before=None, token_dropout=False, flash_attention=True, structure_vocab_size=100, value_loss_scale=0.01, **kwargs, ): super().__init__( pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.emb_layer_norm_before = emb_layer_norm_before self.token_dropout = token_dropout self.flash_attention = flash_attention self.structure_vocab_size = structure_vocab_size ProPrimeConfig.register_for_auto_class()