|
import math |
|
from typing import List, Optional, Tuple, Union |
|
import torch.nn.functional as F |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from dataclasses import dataclass |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
ModelOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.utils import logging |
|
from .configuration_proprime import ProPrimeConfig |
|
from torch.nn.functional import scaled_dot_product_attention |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def consine_based_loss(x1, x2): |
|
cos = nn.CosineSimilarity(dim=0, eps=1e-6) |
|
x1 = x1 - x1.mean() |
|
x2 = x2 - x2.mean() |
|
return 1 - cos(x1, x2).mean() |
|
|
|
PROPRIME_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"AI4protein/ProPrime_650M", |
|
] |
|
|
|
|
|
def rotate_half(x): |
|
return torch.cat((-x[..., x.shape[-1] // 2 :], x[..., : x.shape[-1] // 2]), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
def gelu(x): |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / ( |
|
10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim) |
|
) |
|
inv_freq = inv_freq |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( |
|
self.inv_freq |
|
) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :] |
|
self._sin_cached = emb.sin()[None, None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
class ProPrimeEmbeddings(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
|
|
if config.emb_layer_norm_before: |
|
self.layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
else: |
|
self.layer_norm = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.register_buffer( |
|
"position_ids", |
|
torch.arange(config.max_position_embeddings).expand((1, -1)), |
|
persistent=False, |
|
) |
|
|
|
self.padding_idx = config.pad_token_id |
|
if self.position_embedding_type == "absolute": |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, |
|
config.hidden_size, |
|
padding_idx=self.padding_idx, |
|
) |
|
self.token_dropout = config.token_dropout |
|
self.mask_token_id = config.mask_token_id |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, self.padding_idx, past_key_values_length |
|
) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds( |
|
inputs_embeds |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
embeddings = inputs_embeds |
|
|
|
if self.token_dropout: |
|
embeddings = embeddings.masked_fill( |
|
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0 |
|
) |
|
mask_ratio_train = 0.15 * 0.8 |
|
src_lengths = attention_mask.sum(-1) |
|
mask_ratio_observed = (input_ids == self.mask_token_id).sum( |
|
-1 |
|
).float() / src_lengths |
|
embeddings = ( |
|
embeddings |
|
* (1 - mask_ratio_train) |
|
/ (1 - mask_ratio_observed)[:, None, None] |
|
).to(embeddings.dtype) |
|
|
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
|
|
if self.layer_norm is not None: |
|
embeddings = self.layer_norm(embeddings) |
|
if attention_mask is not None: |
|
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to( |
|
embeddings.dtype |
|
) |
|
|
|
|
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, |
|
sequence_length + self.padding_idx + 1, |
|
dtype=torch.long, |
|
device=inputs_embeds.device, |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class ProPrimeSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.rotary_embeddings = None |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
elif self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
self.flash_attention = config.flash_attention |
|
self.is_decoder = config.is_decoder |
|
self.config = config |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
query_layer = query_layer * self.attention_head_size**-0.5 |
|
|
|
if self.is_decoder: |
|
past_key_value = (key_layer, value_layer) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
if not self.flash_attention: |
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
else: |
|
if self.training: |
|
context_layer = scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attn_mask=attention_mask, |
|
dropout_p=self.config.attention_probs_dropout_prob, |
|
scale=1, |
|
) |
|
else: |
|
context_layer = scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attn_mask=attention_mask, |
|
scale=1, |
|
) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class ProPrimeSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = hidden_states + input_tensor |
|
return hidden_states |
|
|
|
|
|
class ProPrimeAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = ProPrimeSelfAttention(config) |
|
self.output = ProPrimeSelfOutput(config) |
|
self.pruned_heads = set() |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
hidden_states_ln = self.LayerNorm(hidden_states) |
|
self_outputs = self.self( |
|
hidden_states_ln, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
class ProPrimeIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ProPrimeOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = hidden_states + input_tensor |
|
return hidden_states |
|
|
|
|
|
class ProPrimeLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = ProPrimeAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise RuntimeError( |
|
f"{self} should be used as a decoder model if cross attention is added" |
|
) |
|
self.crossattention = ProPrimeAttention(config) |
|
self.intermediate = ProPrimeIntermediate(config) |
|
self.output = ProPrimeOutput(config) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[ |
|
1: |
|
] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise AttributeError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated" |
|
" with cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = ( |
|
past_key_value[-2:] if past_key_value is not None else None |
|
) |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = self.feed_forward_chunk(attention_output) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
attention_output_ln = self.LayerNorm(attention_output) |
|
intermediate_output = self.intermediate(attention_output_ln) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class ProPrimeEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[ProPrimeLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.emb_layer_norm_after = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if self.emb_layer_norm_after: |
|
hidden_states = self.emb_layer_norm_after(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class ProPrimePreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ProPrimeConfig |
|
base_model_prefix = "proprime" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = [ |
|
"ProPrimeLayer", |
|
"ProPrimeEmbeddings", |
|
] |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class ProPrimeModel(ProPrimePreTrainedModel): |
|
base_model_prefix = "proprime" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = ProPrimeEmbeddings(config) |
|
self.encoder = ProPrimeEncoder(config) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( |
|
attention_mask, input_shape |
|
) |
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = ( |
|
encoder_hidden_states.size() |
|
) |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
class ProPrimeForMaskedLM(ProPrimePreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `ProPrimeForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.pro_prime = ProPrimeModel(config, add_pooling_layer=False) |
|
self.lm_head = ProPrimeLMHead(config) |
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.pro_prime.embeddings.word_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.pro_prime( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(prediction_scores.device) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class ProPrimeLMHead(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) + self.bias |
|
return x |
|
|
|
|
|
class ProPrimeStructureHead(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.decoder = nn.Linear(config.hidden_size, config.structure_vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.structure_vocab_size)) |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) + self.bias |
|
return x |
|
|
|
|
|
def create_position_ids_from_input_ids( |
|
input_ids, padding_idx, past_key_values_length=0 |
|
): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = ( |
|
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length |
|
) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
|
|
class MaskedConv1d(nn.Conv1d): |
|
"""A masked 1-dimensional convolution layer. |
|
|
|
Takes the same arguments as torch.nn.Conv1D, except that the padding is set automatically. |
|
|
|
Shape: |
|
Input: (N, L, in_channels) |
|
input_mask: (N, L, 1), optional |
|
Output: (N, L, out_channels) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
): |
|
""" |
|
:param in_channels: input channels |
|
:param out_channels: output channels |
|
:param kernel_size: the kernel width |
|
:param stride: filter shift |
|
:param dilation: dilation factor |
|
:param groups: perform depth-wise convolutions |
|
:param bias: adds learnable bias to output |
|
""" |
|
padding = dilation * (kernel_size - 1) // 2 |
|
super().__init__( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
padding=padding, |
|
) |
|
|
|
def forward(self, x, input_mask=None): |
|
if input_mask is not None: |
|
x = x * input_mask |
|
return super().forward(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
class Attention1d(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.layer = MaskedConv1d(config.hidden_size, 1, 1) |
|
self.out = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
def forward(self, x, input_mask=None): |
|
batch_szie = x.shape[0] |
|
attn = self.layer(x) |
|
attn = attn.view(batch_szie, -1) |
|
if input_mask is not None: |
|
attn = attn.masked_fill_( |
|
~input_mask.view(batch_szie, -1).bool(), float("-inf") |
|
) |
|
attn = F.softmax(attn, dim=-1).view(batch_szie, -1, 1) |
|
out = (attn * x).sum(dim=1) |
|
out = self.out(out) |
|
return out |
|
|
|
|
|
class FFN1d(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.act = nn.GELU() |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class Attention1dPooling(nn.Module): |
|
"""Outputs of the model with the attention1d""" |
|
|
|
def __init__( |
|
self, config |
|
): |
|
super(Attention1dPooling, self).__init__() |
|
self.attention1d = Attention1d(config) |
|
self.ffn = FFN1d(config) |
|
|
|
|
|
self.dropout1 = nn.Dropout(config.hidden_dropout_prob) |
|
self.dropout2 = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, x, input_mask): |
|
attn_out = self.attention1d(x, input_mask=input_mask.unsqueeze(-1)) |
|
x = self.dropout1(attn_out) |
|
|
|
ffn_out = self.ffn(x) |
|
x = x + self.dropout2(ffn_out) |
|
|
|
return x |
|
|
|
|
|
@dataclass |
|
class MaskedLMOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
mlm_loss: Optional[torch.FloatTensor] = None |
|
value_loss: Optional[torch.FloatTensor] = None |
|
predicted_values: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
sequence_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class ProPrimeMV(ProPrimePreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.pro_prime = ProPrimeModel(config, add_pooling_layer=False) |
|
self.lm_head = ProPrimeLMHead(config) |
|
self.sequence_pooling = Attention1dPooling(config) |
|
self.value_projection = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.pro_prime.embeddings.word_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.pro_prime( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(prediction_scores.device) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
if values is not None: |
|
sequence_states = self.sequence_pooling(sequence_output, attention_mask) |
|
predicted_values = self.value_projection(sequence_states) |
|
values = values.to(predicted_values.dtype) |
|
values = values.reshape(-1, 1) |
|
value_loss = nn.MSELoss()(predicted_values, values) |
|
loss = masked_lm_loss + 0.01 * value_loss |
|
else: |
|
sequence_states = self.sequence_pooling(sequence_output, attention_mask) |
|
predicted_values = self.value_projection(sequence_states) |
|
value_loss = None |
|
loss = masked_lm_loss |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
mlm_loss=masked_lm_loss, |
|
value_loss=value_loss, |
|
logits=prediction_scores, |
|
predicted_values=predicted_values.reshape(-1), |
|
hidden_states=outputs.hidden_states, |
|
sequence_hidden_states=sequence_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@dataclass |
|
class PretrainedOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
mlm_loss: Optional[torch.FloatTensor] = None |
|
structure_loss: Optional[torch.FloatTensor] = None |
|
corr_loss: Optional[torch.FloatTensor] = None |
|
value_loss: Optional[torch.FloatTensor] = None |
|
predicted_values: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
structure_logits: torch.FloatTensor = None |
|
sequence_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class ProPrimeForPretraining(ProPrimePreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
base_model_prefix = "proprime" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.pro_prime = ProPrimeModel(config, add_pooling_layer=False) |
|
self.lm_head = ProPrimeLMHead(config) |
|
self.structure_head = ProPrimeStructureHead(config) |
|
self.sequence_pooling = Attention1dPooling(config) |
|
self.value_projection = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.pro_prime.embeddings.word_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
structure_labels: Optional[torch.LongTensor] = None, |
|
values: Optional[torch.FloatTensor] = None, |
|
mutant_input_ids: Optional[torch.LongTensor] = None, |
|
mutant_index: Optional[torch.LongTensor] = None, |
|
mutant_type: Optional[torch.LongTensor] = None, |
|
wild_type: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
outputs = self.pro_prime( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
mlm_scores = self.lm_head(sequence_output) |
|
structure_scores = self.structure_head(sequence_output) |
|
sequence_states = self.sequence_pooling(sequence_output, attention_mask) |
|
predicted_values = self.value_projection(sequence_states) |
|
|
|
loss = 0 |
|
if mutant_input_ids is not None: |
|
with torch.no_grad(): |
|
mutant_outputs = self.pro_prime( |
|
mutant_input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
mutant_sequence_output = mutant_outputs[0] |
|
mutant_sequence_states = self.sequence_pooling(mutant_sequence_output, attention_mask) |
|
mutant_predicted_values = self.value_projection(mutant_sequence_states) |
|
values_diff = mutant_predicted_values - predicted_values |
|
logits = mlm_scores.log_softmax(dim=-1) |
|
mt_probs = logits[torch.arange(logits.size(0)), mutant_index, mutant_type] |
|
wt_probs = logits[torch.arange(logits.size(0)), mutant_index, wild_type] |
|
mutant_effects = mt_probs - wt_probs |
|
corr_loss = consine_based_loss(values_diff.squeeze(), mutant_effects.squeeze()) |
|
loss += corr_loss |
|
else: |
|
corr_loss = None |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
labels = labels.to(mlm_scores.device) |
|
mlm_loss = loss_fct( |
|
mlm_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
loss += mlm_loss |
|
else: |
|
mlm_loss = None |
|
|
|
if structure_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
structure_labels = structure_labels.to(structure_scores.device) |
|
structure_loss = loss_fct( |
|
structure_scores.view(-1, self.config.structure_vocab_size), structure_labels.view(-1) |
|
) |
|
loss += structure_loss |
|
else: |
|
structure_loss = None |
|
|
|
if values is not None: |
|
loss_fct = nn.MSELoss() |
|
values = values.to(predicted_values.dtype) |
|
values = values.reshape(-1, 1) |
|
value_loss = nn.MSELoss()(predicted_values, values) |
|
loss += 0.01 * value_loss |
|
else: |
|
value_loss = None |
|
|
|
return PretrainedOutput( |
|
loss=loss, |
|
mlm_loss=mlm_loss, |
|
structure_loss=structure_loss, |
|
value_loss=value_loss, |
|
corr_loss=corr_loss, |
|
logits=mlm_scores, |
|
structure_logits=structure_scores, |
|
predicted_values=predicted_values, |
|
hidden_states=outputs.hidden_states, |
|
sequence_hidden_states=sequence_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
ProPrimeForMaskedLM.register_for_auto_class("AutoModelForMaskedLM") |
|
ProPrimeForPretraining.register_for_auto_class("AutoModel") |