Update README.md
Browse files
README.md
CHANGED
@@ -3,5 +3,177 @@ license: mit
|
|
3 |
---
|
4 |
Finetune based on ChemLLM-20B and InterViT-6B
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
Finetune based on ChemLLM-20B and InterViT-6B
|
5 |
|
6 |
+
|
7 |
+
## Model Usage
|
8 |
+
|
9 |
+
We provide an example code to run ChemVLM-26B using `transformers`.
|
10 |
+
|
11 |
+
You can also use our [online demo](https://v.chemllm.org/) for a quick experience of this model.
|
12 |
+
|
13 |
+
> Please use transformers==4.37.2 to ensure the model works normally.
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer, AutoModel
|
17 |
+
import torch
|
18 |
+
import torchvision.transforms as T
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
from torchvision.transforms.functional import InterpolationMode
|
22 |
+
|
23 |
+
|
24 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
25 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
26 |
+
|
27 |
+
|
28 |
+
def build_transform(input_size):
|
29 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
30 |
+
transform = T.Compose([
|
31 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
32 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
33 |
+
T.ToTensor(),
|
34 |
+
T.Normalize(mean=MEAN, std=STD)
|
35 |
+
])
|
36 |
+
return transform
|
37 |
+
|
38 |
+
|
39 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
40 |
+
best_ratio_diff = float('inf')
|
41 |
+
best_ratio = (1, 1)
|
42 |
+
area = width * height
|
43 |
+
for ratio in target_ratios:
|
44 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
45 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
46 |
+
if ratio_diff < best_ratio_diff:
|
47 |
+
best_ratio_diff = ratio_diff
|
48 |
+
best_ratio = ratio
|
49 |
+
elif ratio_diff == best_ratio_diff:
|
50 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
51 |
+
best_ratio = ratio
|
52 |
+
return best_ratio
|
53 |
+
|
54 |
+
|
55 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
56 |
+
orig_width, orig_height = image.size
|
57 |
+
aspect_ratio = orig_width / orig_height
|
58 |
+
|
59 |
+
# calculate the existing image aspect ratio
|
60 |
+
target_ratios = set(
|
61 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
62 |
+
i * j <= max_num and i * j >= min_num)
|
63 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
64 |
+
|
65 |
+
# find the closest aspect ratio to the target
|
66 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
67 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
68 |
+
|
69 |
+
# calculate the target width and height
|
70 |
+
target_width = image_size * target_aspect_ratio[0]
|
71 |
+
target_height = image_size * target_aspect_ratio[1]
|
72 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
73 |
+
|
74 |
+
# resize the image
|
75 |
+
resized_img = image.resize((target_width, target_height))
|
76 |
+
processed_images = []
|
77 |
+
for i in range(blocks):
|
78 |
+
box = (
|
79 |
+
(i % (target_width // image_size)) * image_size,
|
80 |
+
(i // (target_width // image_size)) * image_size,
|
81 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
82 |
+
((i // (target_width // image_size)) + 1) * image_size
|
83 |
+
)
|
84 |
+
# split the image
|
85 |
+
split_img = resized_img.crop(box)
|
86 |
+
processed_images.append(split_img)
|
87 |
+
assert len(processed_images) == blocks
|
88 |
+
if use_thumbnail and len(processed_images) != 1:
|
89 |
+
thumbnail_img = image.resize((image_size, image_size))
|
90 |
+
processed_images.append(thumbnail_img)
|
91 |
+
return processed_images
|
92 |
+
|
93 |
+
|
94 |
+
def load_image(image_file, input_size=448, max_num=6):
|
95 |
+
image = Image.open(image_file).convert('RGB')
|
96 |
+
transform = build_transform(input_size=input_size)
|
97 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
98 |
+
pixel_values = [transform(image) for image in images]
|
99 |
+
pixel_values = torch.stack(pixel_values)
|
100 |
+
return pixel_values
|
101 |
+
|
102 |
+
path = "OpenGVLab/InternVL-Chat-V1-5"
|
103 |
+
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
|
104 |
+
model = AutoModel.from_pretrained(
|
105 |
+
path,
|
106 |
+
torch_dtype=torch.bfloat16,
|
107 |
+
low_cpu_mem_usage=True,
|
108 |
+
trust_remote_code=True).eval().cuda()
|
109 |
+
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
|
110 |
+
# import os
|
111 |
+
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
112 |
+
# model = AutoModel.from_pretrained(
|
113 |
+
# path,
|
114 |
+
# torch_dtype=torch.bfloat16,
|
115 |
+
# low_cpu_mem_usage=True,
|
116 |
+
# trust_remote_code=True,
|
117 |
+
# device_map='auto').eval()
|
118 |
+
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
120 |
+
# set the max number of tiles in `max_num`
|
121 |
+
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
122 |
+
|
123 |
+
generation_config = dict(
|
124 |
+
num_beams=1,
|
125 |
+
max_new_tokens=512,
|
126 |
+
do_sample=False,
|
127 |
+
)
|
128 |
+
|
129 |
+
# single-round single-image conversation
|
130 |
+
question = "请详细描述图片" # Please describe the picture in detail
|
131 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
132 |
+
print(question, response)
|
133 |
+
|
134 |
+
# multi-round single-image conversation
|
135 |
+
question = "请详细描述图片" # Please describe the picture in detail
|
136 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
137 |
+
print(question, response)
|
138 |
+
|
139 |
+
question = "请根据图片写一首诗" # Please write a poem according to the picture
|
140 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
141 |
+
print(question, response)
|
142 |
+
|
143 |
+
# multi-round multi-image conversation
|
144 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
145 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
|
146 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
147 |
+
|
148 |
+
question = "详细描述这两张图片" # Describe the two pictures in detail
|
149 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
150 |
+
print(question, response)
|
151 |
+
|
152 |
+
question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures
|
153 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
154 |
+
print(question, response)
|
155 |
+
|
156 |
+
# batch inference (single image per sample)
|
157 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
158 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
|
159 |
+
image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
|
160 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
161 |
+
|
162 |
+
questions = ["Describe the image in detail."] * len(image_counts)
|
163 |
+
responses = model.batch_chat(tokenizer, pixel_values,
|
164 |
+
image_counts=image_counts,
|
165 |
+
questions=questions,
|
166 |
+
generation_config=generation_config)
|
167 |
+
for question, response in zip(questions, responses):
|
168 |
+
print(question)
|
169 |
+
print(response)
|
170 |
+
```
|
171 |
+
|
172 |
+
## License
|
173 |
+
|
174 |
+
This project is released under the MIT license.
|
175 |
+
|
176 |
+
## Acknowledgement
|
177 |
+
|
178 |
+
ChemVLM is built on [InternVL](https://github.com/OpenGVLab/InternVL).
|
179 |
+
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
|