Upload 12 files
Browse files- .gitattributes +0 -1
- README.md +230 -0
- config.json +28 -0
- configuration_RW.py +79 -0
- generation_config.json +6 -0
- handler.py +33 -0
- modelling_RW.py +1100 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +203 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +8 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,233 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- tiiuae/falcon-refinedweb
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
inference: true
|
7 |
+
widget:
|
8 |
+
- text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
|
9 |
+
example_title: "Abu Dhabi Trip"
|
10 |
+
- text: "What's the Everett interpretation of quantum mechanics?"
|
11 |
+
example_title: "Q/A: Quantum & Answers"
|
12 |
+
- text: "Give me a list of the top 10 dive sites you would recommend around the world."
|
13 |
+
example_title: "Diving Top 10"
|
14 |
+
- text: "Can you tell me more about deep-water soloing?"
|
15 |
+
example_title: "Extreme sports"
|
16 |
+
- text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
|
17 |
+
example_title: "Twitter Helper"
|
18 |
+
- text: "What are the responsabilities of a Chief Llama Officer?"
|
19 |
+
example_title: "Trendy Jobs"
|
20 |
license: apache-2.0
|
21 |
---
|
22 |
+
|
23 |
+
# ✨ Falcon-7B-Instruct
|
24 |
+
|
25 |
+
**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**
|
26 |
+
|
27 |
+
*Paper coming soon 😊.*
|
28 |
+
|
29 |
+
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
|
30 |
+
|
31 |
+
## Why use Falcon-7B-Instruct?
|
32 |
+
|
33 |
+
* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
|
34 |
+
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
35 |
+
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
|
36 |
+
|
37 |
+
💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
|
38 |
+
|
39 |
+
🔥 **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
43 |
+
import transformers
|
44 |
+
import torch
|
45 |
+
|
46 |
+
model = "tiiuae/falcon-7b-instruct"
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
49 |
+
pipeline = transformers.pipeline(
|
50 |
+
"text-generation",
|
51 |
+
model=model,
|
52 |
+
tokenizer=tokenizer,
|
53 |
+
torch_dtype=torch.bfloat16,
|
54 |
+
trust_remote_code=True,
|
55 |
+
device_map="auto",
|
56 |
+
)
|
57 |
+
sequences = pipeline(
|
58 |
+
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
|
59 |
+
max_length=200,
|
60 |
+
do_sample=True,
|
61 |
+
top_k=10,
|
62 |
+
num_return_sequences=1,
|
63 |
+
eos_token_id=tokenizer.eos_token_id,
|
64 |
+
)
|
65 |
+
for seq in sequences:
|
66 |
+
print(f"Result: {seq['generated_text']}")
|
67 |
+
|
68 |
+
```
|
69 |
+
|
70 |
+
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
|
71 |
+
|
72 |
+
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
|
73 |
+
|
74 |
+
You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
|
75 |
+
|
76 |
+
|
77 |
+
# Model Card for Falcon-7B-Instruct
|
78 |
+
|
79 |
+
## Model Details
|
80 |
+
|
81 |
+
### Model Description
|
82 |
+
|
83 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
|
84 |
+
- **Model type:** Causal decoder-only;
|
85 |
+
- **Language(s) (NLP):** English and French;
|
86 |
+
- **License:** Apache 2.0;
|
87 |
+
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
|
88 |
+
|
89 |
+
### Model Source
|
90 |
+
|
91 |
+
- **Paper:** *coming soon*.
|
92 |
+
|
93 |
+
## Uses
|
94 |
+
|
95 |
+
### Direct Use
|
96 |
+
|
97 |
+
Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.
|
98 |
+
|
99 |
+
### Out-of-Scope Use
|
100 |
+
|
101 |
+
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
|
102 |
+
|
103 |
+
## Bias, Risks, and Limitations
|
104 |
+
|
105 |
+
Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
|
106 |
+
|
107 |
+
### Recommendations
|
108 |
+
|
109 |
+
We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.
|
110 |
+
|
111 |
+
## How to Get Started with the Model
|
112 |
+
|
113 |
+
|
114 |
+
```python
|
115 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
116 |
+
import transformers
|
117 |
+
import torch
|
118 |
+
|
119 |
+
model = "tiiuae/falcon-7b-instruct"
|
120 |
+
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
122 |
+
pipeline = transformers.pipeline(
|
123 |
+
"text-generation",
|
124 |
+
model=model,
|
125 |
+
tokenizer=tokenizer,
|
126 |
+
torch_dtype=torch.bfloat16,
|
127 |
+
trust_remote_code=True,
|
128 |
+
device_map="auto",
|
129 |
+
)
|
130 |
+
sequences = pipeline(
|
131 |
+
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
|
132 |
+
max_length=200,
|
133 |
+
do_sample=True,
|
134 |
+
top_k=10,
|
135 |
+
num_return_sequences=1,
|
136 |
+
eos_token_id=tokenizer.eos_token_id,
|
137 |
+
)
|
138 |
+
for seq in sequences:
|
139 |
+
print(f"Result: {seq['generated_text']}")
|
140 |
+
|
141 |
+
```
|
142 |
+
|
143 |
+
## Training Details
|
144 |
+
|
145 |
+
### Training Data
|
146 |
+
|
147 |
+
Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.
|
148 |
+
|
149 |
+
| **Data source** | **Fraction** | **Tokens** | **Description** |
|
150 |
+
|--------------------|--------------|------------|-----------------------------------|
|
151 |
+
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65% | 164M | chat |
|
152 |
+
| [GPT4All](https://github.com/nomic-ai/gpt4all) | 25% | 62M | instruct |
|
153 |
+
| [GPTeacher](https://github.com/teknium1/GPTeacher) | 5% | 11M | instruct |
|
154 |
+
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5% | 13M | massive web crawl |
|
155 |
+
|
156 |
+
|
157 |
+
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
|
158 |
+
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
*Paper coming soon.*
|
163 |
+
|
164 |
+
See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
|
165 |
+
|
166 |
+
Note that this model variant is not optimized for NLP benchmarks.
|
167 |
+
|
168 |
+
|
169 |
+
## Technical Specifications
|
170 |
+
|
171 |
+
For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
|
172 |
+
|
173 |
+
### Model Architecture and Objective
|
174 |
+
|
175 |
+
Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
|
176 |
+
|
177 |
+
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
|
178 |
+
|
179 |
+
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
|
180 |
+
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
|
181 |
+
* **Decoder-block:** parallel attention/MLP with a single layer norm.
|
182 |
+
|
183 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
184 |
+
|--------------------|-----------|----------------------------------------|
|
185 |
+
| Layers | 32 | |
|
186 |
+
| `d_model` | 4544 | Increased to compensate for multiquery |
|
187 |
+
| `head_dim` | 64 | Reduced to optimise for FlashAttention |
|
188 |
+
| Vocabulary | 65024 | |
|
189 |
+
| Sequence length | 2048 | |
|
190 |
+
|
191 |
+
### Compute Infrastructure
|
192 |
+
|
193 |
+
#### Hardware
|
194 |
+
|
195 |
+
Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.
|
196 |
+
|
197 |
+
#### Software
|
198 |
+
|
199 |
+
Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
|
200 |
+
|
201 |
+
|
202 |
+
## Citation
|
203 |
+
|
204 |
+
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
|
205 |
+
```
|
206 |
+
@article{falcon40b,
|
207 |
+
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
|
208 |
+
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
|
209 |
+
year={2023}
|
210 |
+
}
|
211 |
+
```
|
212 |
+
|
213 |
+
To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
|
214 |
+
|
215 |
+
```
|
216 |
+
@article{refinedweb,
|
217 |
+
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
|
218 |
+
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
|
219 |
+
journal={arXiv preprint arXiv:2306.01116},
|
220 |
+
eprint={2306.01116},
|
221 |
+
eprinttype = {arXiv},
|
222 |
+
url={https://arxiv.org/abs/2306.01116},
|
223 |
+
year={2023}
|
224 |
+
}
|
225 |
+
```
|
226 |
+
|
227 |
+
|
228 |
+
## License
|
229 |
+
|
230 |
+
Falcon-7B-Instruct is made available under the Apache 2.0 license.
|
231 |
+
|
232 |
+
## Contact
|
233 |
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alibi": false,
|
3 |
+
"apply_residual_connection_post_layernorm": false,
|
4 |
+
"architectures": [
|
5 |
+
"RWForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_RW.RWConfig",
|
10 |
+
"AutoModelForCausalLM": "modelling_RW.RWForCausalLM"
|
11 |
+
},
|
12 |
+
"bias": false,
|
13 |
+
"bos_token_id": 11,
|
14 |
+
"eos_token_id": 11,
|
15 |
+
"hidden_dropout": 0.0,
|
16 |
+
"hidden_size": 4544,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"layer_norm_epsilon": 1e-05,
|
19 |
+
"model_type": "RefinedWebModel",
|
20 |
+
"multi_query": true,
|
21 |
+
"n_head": 71,
|
22 |
+
"n_layer": 32,
|
23 |
+
"parallel_attn": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.27.4",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 65024
|
28 |
+
}
|
configuration_RW.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Bloom configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class RWConfig(PretrainedConfig):
|
24 |
+
model_type = "RefinedWebModel"
|
25 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
26 |
+
attribute_map = {
|
27 |
+
"num_hidden_layers": "n_layer",
|
28 |
+
"num_attention_heads": "n_head",
|
29 |
+
}
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
vocab_size=250880,
|
34 |
+
hidden_size=64,
|
35 |
+
n_layer=2,
|
36 |
+
n_head=8,
|
37 |
+
layer_norm_epsilon=1e-5,
|
38 |
+
initializer_range=0.02,
|
39 |
+
use_cache=True,
|
40 |
+
bos_token_id=1,
|
41 |
+
eos_token_id=2,
|
42 |
+
apply_residual_connection_post_layernorm=False,
|
43 |
+
hidden_dropout=0.0,
|
44 |
+
attention_dropout=0.0,
|
45 |
+
multi_query=False,
|
46 |
+
alibi=False,
|
47 |
+
bias=False,
|
48 |
+
parallel_attn=False,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.vocab_size = vocab_size
|
52 |
+
# Backward compatibility with n_embed kwarg
|
53 |
+
n_embed = kwargs.pop("n_embed", None)
|
54 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
55 |
+
self.n_layer = n_layer
|
56 |
+
self.n_head = n_head
|
57 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
58 |
+
self.initializer_range = initializer_range
|
59 |
+
self.use_cache = use_cache
|
60 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
61 |
+
self.hidden_dropout = hidden_dropout
|
62 |
+
self.attention_dropout = attention_dropout
|
63 |
+
|
64 |
+
self.bos_token_id = bos_token_id
|
65 |
+
self.eos_token_id = eos_token_id
|
66 |
+
self.multi_query = multi_query
|
67 |
+
self.alibi = alibi
|
68 |
+
self.bias = bias
|
69 |
+
self.parallel_attn = parallel_attn
|
70 |
+
|
71 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
72 |
+
|
73 |
+
@property
|
74 |
+
def head_dim(self):
|
75 |
+
return self.hidden_size // self.n_head
|
76 |
+
|
77 |
+
@property
|
78 |
+
def rotary(self):
|
79 |
+
return not self.alibi
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.27.4"
|
6 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from typing import Any, Dict
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self, path=""):
|
9 |
+
# load model and tokenizer from path
|
10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
11 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
|
13 |
+
)
|
14 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
17 |
+
# process input
|
18 |
+
inputs = data.pop("inputs", data)
|
19 |
+
parameters = data.pop("parameters", None)
|
20 |
+
|
21 |
+
# preprocess
|
22 |
+
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
|
23 |
+
|
24 |
+
# pass inputs with all kwargs in data
|
25 |
+
if parameters is not None:
|
26 |
+
outputs = self.model.generate(**inputs, **parameters)
|
27 |
+
else:
|
28 |
+
outputs = self.model.generate(**inputs)
|
29 |
+
|
30 |
+
# postprocess the prediction
|
31 |
+
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
return [{"generated_text": prediction}]
|
modelling_RW.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# port of models described in RW
|
2 |
+
# We use the bloom model as a starting point for these model.
|
3 |
+
# Please refer to the bloom models for usage instructions.
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
13 |
+
from torch.nn import functional as F
|
14 |
+
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
17 |
+
CausalLMOutputWithCrossAttentions,
|
18 |
+
QuestionAnsweringModelOutput,
|
19 |
+
SequenceClassifierOutputWithPast,
|
20 |
+
TokenClassifierOutput,
|
21 |
+
)
|
22 |
+
from transformers.modeling_utils import PreTrainedModel
|
23 |
+
from transformers.utils import logging
|
24 |
+
from .configuration_RW import RWConfig
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
29 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
30 |
+
class Linear(nn.Linear):
|
31 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
32 |
+
ret = input @ self.weight.T
|
33 |
+
if self.bias is None:
|
34 |
+
return ret
|
35 |
+
else:
|
36 |
+
return ret + self.bias
|
37 |
+
|
38 |
+
|
39 |
+
from einops import rearrange
|
40 |
+
|
41 |
+
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
42 |
+
def rotate_half(x):
|
43 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
44 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0
|
45 |
+
|
46 |
+
|
47 |
+
class RotaryEmbedding(torch.nn.Module):
|
48 |
+
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
49 |
+
This implementation is design to operate on queries and keys that are compatible with
|
50 |
+
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
head_dim: int,
|
56 |
+
base=10000,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
61 |
+
self.head_dim = head_dim
|
62 |
+
self.seq_len_cached = None
|
63 |
+
self.batch_size_cached = None
|
64 |
+
self.cos_cached: torch.Tensor | None = None
|
65 |
+
self.sin_cached: torch.Tensor | None = None
|
66 |
+
|
67 |
+
def cos_sin(
|
68 |
+
self,
|
69 |
+
seq_len: int,
|
70 |
+
device="cuda",
|
71 |
+
dtype=torch.bfloat16,
|
72 |
+
) -> torch.Tensor:
|
73 |
+
if seq_len != self.seq_len_cached:
|
74 |
+
self.seq_len_cached = seq_len
|
75 |
+
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
76 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
77 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
78 |
+
|
79 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
80 |
+
emb = emb.float()
|
81 |
+
|
82 |
+
self.cos_cached = emb.cos()[None, :, :]
|
83 |
+
self.sin_cached = emb.sin()[None, :, :]
|
84 |
+
|
85 |
+
self.cos_cached = self.cos_cached.type(dtype)
|
86 |
+
self.sin_cached = self.sin_cached.type(dtype)
|
87 |
+
|
88 |
+
return self.cos_cached, self.sin_cached
|
89 |
+
|
90 |
+
def forward(self, q, k):
|
91 |
+
batch, seq_len, head_dim = q.shape
|
92 |
+
cos, sin = self.cos_sin(seq_len, q.device, q.dtype)
|
93 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
94 |
+
|
95 |
+
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
98 |
+
) -> torch.BoolTensor:
|
99 |
+
batch_size, target_length = input_ids_shape
|
100 |
+
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
101 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
102 |
+
seq_ids = torch.arange(target_length, device=device)
|
103 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
104 |
+
|
105 |
+
if past_key_values_length > 0:
|
106 |
+
mask[:, :past_key_values_length] = False
|
107 |
+
|
108 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
109 |
+
return expanded_mask
|
110 |
+
|
111 |
+
|
112 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
113 |
+
batch_size, src_length = mask.shape
|
114 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
115 |
+
|
116 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
117 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
118 |
+
|
119 |
+
|
120 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
121 |
+
batch_size, seq_length = attention_mask.shape
|
122 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
123 |
+
base = torch.tensor(
|
124 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
125 |
+
)
|
126 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
127 |
+
slopes = torch.pow(base, powers)
|
128 |
+
|
129 |
+
if closest_power_of_2 != num_heads:
|
130 |
+
extra_base = torch.tensor(
|
131 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
132 |
+
)
|
133 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
134 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
135 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
136 |
+
|
137 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
138 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
139 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
140 |
+
# => the query_length dimension will then be broadcasted correctly
|
141 |
+
# This is more or less identical to T5's relative position bias:
|
142 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
143 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
144 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
145 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
146 |
+
|
147 |
+
|
148 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
149 |
+
out = F.dropout(x, p=prob, training=training)
|
150 |
+
out = residual + out
|
151 |
+
return out
|
152 |
+
|
153 |
+
|
154 |
+
class Attention(nn.Module):
|
155 |
+
def __init__(self, config: RWConfig):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
self.hidden_size = config.hidden_size
|
159 |
+
self.num_heads = config.n_head
|
160 |
+
self.head_dim = self.hidden_size // self.num_heads
|
161 |
+
self.split_size = self.hidden_size
|
162 |
+
self.hidden_dropout = config.hidden_dropout
|
163 |
+
|
164 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
165 |
+
raise ValueError(
|
166 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
167 |
+
f" {self.num_heads})."
|
168 |
+
)
|
169 |
+
|
170 |
+
self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k)
|
171 |
+
|
172 |
+
# Layer-wise attention scaling
|
173 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
174 |
+
self.beta = self.inv_norm_factor
|
175 |
+
|
176 |
+
self.query_key_value = Linear(
|
177 |
+
self.hidden_size,
|
178 |
+
3 * self.hidden_size if not config.multi_query else (self.hidden_size + 2 * self.head_dim),
|
179 |
+
bias=config.bias,
|
180 |
+
)
|
181 |
+
self.multi_query = config.multi_query
|
182 |
+
self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias)
|
183 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
184 |
+
self.num_kv = config.n_head if not self.multi_query else 1
|
185 |
+
|
186 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
187 |
+
"""
|
188 |
+
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
189 |
+
storage as `fused_qkv`
|
190 |
+
|
191 |
+
Args:
|
192 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
196 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
197 |
+
"""
|
198 |
+
if not self.multi_query:
|
199 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
200 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
201 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
202 |
+
else:
|
203 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
204 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
205 |
+
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
206 |
+
|
207 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
208 |
+
"""
|
209 |
+
Merge heads together over the last dimenstion
|
210 |
+
|
211 |
+
Args:
|
212 |
+
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
216 |
+
"""
|
217 |
+
# What we want to achieve is:
|
218 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
219 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
220 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
221 |
+
|
222 |
+
# First view to decompose the batch size
|
223 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
224 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
225 |
+
|
226 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
227 |
+
x = x.permute(0, 2, 1, 3)
|
228 |
+
|
229 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
230 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
hidden_states: torch.Tensor,
|
235 |
+
alibi: torch.Tensor,
|
236 |
+
attention_mask: torch.Tensor,
|
237 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
238 |
+
head_mask: Optional[torch.Tensor] = None,
|
239 |
+
use_cache: bool = False,
|
240 |
+
output_attentions: bool = False,
|
241 |
+
):
|
242 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
243 |
+
|
244 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
245 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
246 |
+
|
247 |
+
batch_size, q_length, _, _ = query_layer.shape
|
248 |
+
|
249 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
250 |
+
key_layer = key_layer.transpose(1, 2).reshape(
|
251 |
+
batch_size * self.num_kv,
|
252 |
+
q_length,
|
253 |
+
self.head_dim,
|
254 |
+
)
|
255 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_kv, q_length, self.head_dim)
|
256 |
+
|
257 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
|
258 |
+
|
259 |
+
if layer_past is not None:
|
260 |
+
past_key, past_value = layer_past
|
261 |
+
# concatenate along seq_length dimension:
|
262 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
263 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
264 |
+
key_layer = torch.cat((past_key, key_layer), dim=1)
|
265 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
266 |
+
|
267 |
+
_, kv_length, _ = key_layer.shape
|
268 |
+
|
269 |
+
if use_cache is True:
|
270 |
+
present = (key_layer, value_layer)
|
271 |
+
else:
|
272 |
+
present = None
|
273 |
+
|
274 |
+
if alibi is None:
|
275 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
276 |
+
key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
|
277 |
+
value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
|
278 |
+
|
279 |
+
attn_output = F.scaled_dot_product_attention(
|
280 |
+
query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
|
281 |
+
)
|
282 |
+
|
283 |
+
x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
|
284 |
+
x = x.permute(0, 2, 1, 3)
|
285 |
+
attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
|
286 |
+
|
287 |
+
output_tensor = self.dense(attn_output)
|
288 |
+
|
289 |
+
outputs = (output_tensor, present)
|
290 |
+
assert not output_attentions # not supported.
|
291 |
+
return outputs
|
292 |
+
else:
|
293 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16)
|
294 |
+
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
295 |
+
|
296 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
297 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
298 |
+
|
299 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
300 |
+
input_dtype = attention_scores.dtype
|
301 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
302 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
303 |
+
attention_scores = attention_scores.to(torch.float32)
|
304 |
+
# attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
305 |
+
attention_probs = F.softmax(
|
306 |
+
(attention_scores + alibi) * self.inv_norm_factor + attention_mask_float,
|
307 |
+
dim=-1,
|
308 |
+
dtype=hidden_states.dtype,
|
309 |
+
)
|
310 |
+
# [batch_size, num_heads, q_length, kv_length]
|
311 |
+
attention_probs = self.attention_dropout(attention_probs)
|
312 |
+
|
313 |
+
if head_mask is not None:
|
314 |
+
attention_probs = attention_probs * head_mask
|
315 |
+
|
316 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
317 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
318 |
+
|
319 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
320 |
+
context_layer = attention_probs_reshaped @ value_layer
|
321 |
+
|
322 |
+
# change view [batch_size, num_heads, q_length, head_dim]
|
323 |
+
context_layer = self._merge_heads(context_layer)
|
324 |
+
|
325 |
+
output_tensor = self.dense(context_layer)
|
326 |
+
|
327 |
+
outputs = (output_tensor, present)
|
328 |
+
if output_attentions:
|
329 |
+
outputs += (attention_probs,)
|
330 |
+
|
331 |
+
return outputs
|
332 |
+
|
333 |
+
|
334 |
+
class MLP(nn.Module):
|
335 |
+
def __init__(self, config: RWConfig):
|
336 |
+
super().__init__()
|
337 |
+
hidden_size = config.hidden_size
|
338 |
+
|
339 |
+
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias)
|
340 |
+
self.act = nn.GELU()
|
341 |
+
self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias)
|
342 |
+
self.hidden_dropout = config.hidden_dropout
|
343 |
+
|
344 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
345 |
+
x = self.act(self.dense_h_to_4h(x))
|
346 |
+
x = self.dense_4h_to_h(x)
|
347 |
+
return x
|
348 |
+
|
349 |
+
|
350 |
+
class DecoderLayer(nn.Module):
|
351 |
+
def __init__(self, config: RWConfig):
|
352 |
+
super().__init__()
|
353 |
+
hidden_size = config.hidden_size
|
354 |
+
|
355 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
356 |
+
self.num_heads = config.n_head
|
357 |
+
self.self_attention = Attention(config)
|
358 |
+
|
359 |
+
if not config.parallel_attn:
|
360 |
+
# unused if parallel attn
|
361 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
362 |
+
|
363 |
+
self.mlp = MLP(config)
|
364 |
+
|
365 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
366 |
+
self.hidden_dropout = config.hidden_dropout
|
367 |
+
|
368 |
+
self.config = config
|
369 |
+
|
370 |
+
def forward(
|
371 |
+
self,
|
372 |
+
hidden_states: torch.Tensor,
|
373 |
+
alibi: torch.Tensor,
|
374 |
+
attention_mask: torch.Tensor,
|
375 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
376 |
+
head_mask: Optional[torch.Tensor] = None,
|
377 |
+
use_cache: bool = False,
|
378 |
+
output_attentions: bool = False,
|
379 |
+
):
|
380 |
+
|
381 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
382 |
+
residual = hidden_states
|
383 |
+
|
384 |
+
# Self attention.
|
385 |
+
attn_outputs = self.self_attention(
|
386 |
+
layernorm_output,
|
387 |
+
layer_past=layer_past,
|
388 |
+
attention_mask=attention_mask,
|
389 |
+
alibi=alibi,
|
390 |
+
head_mask=head_mask,
|
391 |
+
use_cache=use_cache,
|
392 |
+
output_attentions=output_attentions,
|
393 |
+
)
|
394 |
+
|
395 |
+
attention_output = attn_outputs[0]
|
396 |
+
|
397 |
+
if not self.config.parallel_attn:
|
398 |
+
residual = dropout_add(attention_output, residual, self.config.attention_dropout, training=self.training)
|
399 |
+
layernorm_output = self.post_attention_layernorm(residual)
|
400 |
+
|
401 |
+
outputs = attn_outputs[1:]
|
402 |
+
|
403 |
+
# MLP.
|
404 |
+
mlp_output = self.mlp(layernorm_output)
|
405 |
+
|
406 |
+
if self.config.parallel_attn:
|
407 |
+
mlp_output += attention_output
|
408 |
+
|
409 |
+
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
410 |
+
|
411 |
+
if use_cache:
|
412 |
+
outputs = (output,) + outputs
|
413 |
+
else:
|
414 |
+
outputs = (output,) + outputs[1:]
|
415 |
+
|
416 |
+
return outputs # hidden_states, present, attentions
|
417 |
+
|
418 |
+
|
419 |
+
class RWPreTrainedModel(PreTrainedModel):
|
420 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
421 |
+
"""
|
422 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
423 |
+
models.
|
424 |
+
"""
|
425 |
+
|
426 |
+
config_class = RWConfig
|
427 |
+
base_model_prefix = "transformer"
|
428 |
+
supports_gradient_checkpointing = True
|
429 |
+
_no_split_modules = ["DecoderLayer"]
|
430 |
+
|
431 |
+
def __init__(self, *inputs, **kwargs):
|
432 |
+
super().__init__(*inputs, **kwargs)
|
433 |
+
|
434 |
+
def _init_weights(self, module: nn.Module):
|
435 |
+
"""Initialize the weights."""
|
436 |
+
if isinstance(module, nn.Linear) or isinstance(module, Linear):
|
437 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
438 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
439 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
440 |
+
if module.bias is not None:
|
441 |
+
module.bias.data.zero_()
|
442 |
+
elif isinstance(module, nn.Embedding):
|
443 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
444 |
+
if module.padding_idx is not None:
|
445 |
+
module.weight.data[module.padding_idx].zero_()
|
446 |
+
elif isinstance(module, LayerNorm):
|
447 |
+
module.bias.data.zero_()
|
448 |
+
module.weight.data.fill_(1.0)
|
449 |
+
|
450 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
451 |
+
if isinstance(module, RWModel):
|
452 |
+
module.gradient_checkpointing = value
|
453 |
+
|
454 |
+
@staticmethod
|
455 |
+
def _convert_to_standard_cache(
|
456 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
457 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
458 |
+
"""
|
459 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
460 |
+
num_heads, ...]))
|
461 |
+
"""
|
462 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
463 |
+
num_heads = batch_size_times_num_heads // batch_size
|
464 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
465 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
466 |
+
return tuple(
|
467 |
+
(
|
468 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
469 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
470 |
+
)
|
471 |
+
for layer_past in past_key_value
|
472 |
+
)
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def _convert_to_rw_cache(
|
476 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
477 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
478 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
479 |
+
batch_size_times_num_heads = batch_size * num_heads
|
480 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
481 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
482 |
+
return tuple(
|
483 |
+
(
|
484 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
485 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
486 |
+
)
|
487 |
+
for layer_past in past_key_value
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
class RWModel(RWPreTrainedModel):
|
492 |
+
def __init__(self, config: RWConfig):
|
493 |
+
super().__init__(config)
|
494 |
+
|
495 |
+
self.embed_dim = config.hidden_size
|
496 |
+
self.num_heads = config.n_head
|
497 |
+
self.alibi = config.alibi
|
498 |
+
|
499 |
+
# Embedding + LN Embedding
|
500 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
501 |
+
|
502 |
+
# Transformer blocks
|
503 |
+
self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
504 |
+
|
505 |
+
# Final Layer Norm
|
506 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
507 |
+
|
508 |
+
self.gradient_checkpointing = False
|
509 |
+
|
510 |
+
# Initialize weights and apply final processing
|
511 |
+
self.post_init()
|
512 |
+
|
513 |
+
def get_input_embeddings(self):
|
514 |
+
return self.word_embeddings
|
515 |
+
|
516 |
+
def _prepare_attn_mask(
|
517 |
+
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
518 |
+
) -> torch.BoolTensor:
|
519 |
+
# create causal mask
|
520 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
521 |
+
combined_attention_mask = None
|
522 |
+
device = attention_mask.device
|
523 |
+
_, src_length = input_shape
|
524 |
+
|
525 |
+
if src_length > 1:
|
526 |
+
combined_attention_mask = _make_causal_mask(
|
527 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
528 |
+
)
|
529 |
+
|
530 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
531 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
532 |
+
combined_attention_mask = (
|
533 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
534 |
+
)
|
535 |
+
|
536 |
+
return combined_attention_mask
|
537 |
+
|
538 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
539 |
+
self.word_embeddings = new_embeddings
|
540 |
+
|
541 |
+
def forward(
|
542 |
+
self,
|
543 |
+
input_ids: Optional[torch.LongTensor] = None,
|
544 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
545 |
+
attention_mask: Optional[torch.Tensor] = None,
|
546 |
+
head_mask: Optional[torch.LongTensor] = None,
|
547 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
548 |
+
use_cache: Optional[bool] = None,
|
549 |
+
output_attentions: Optional[bool] = None,
|
550 |
+
output_hidden_states: Optional[bool] = None,
|
551 |
+
return_dict: Optional[bool] = None,
|
552 |
+
**deprecated_arguments,
|
553 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
554 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
555 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
556 |
+
warnings.warn(
|
557 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
558 |
+
" passing `position_ids`.",
|
559 |
+
FutureWarning,
|
560 |
+
)
|
561 |
+
if len(deprecated_arguments) > 0:
|
562 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
563 |
+
|
564 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
565 |
+
output_hidden_states = (
|
566 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
567 |
+
)
|
568 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
569 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
570 |
+
|
571 |
+
if input_ids is not None and inputs_embeds is not None:
|
572 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
573 |
+
elif input_ids is not None:
|
574 |
+
batch_size, seq_length = input_ids.shape
|
575 |
+
elif inputs_embeds is not None:
|
576 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
577 |
+
else:
|
578 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
579 |
+
|
580 |
+
if past_key_values is None:
|
581 |
+
past_key_values = tuple([None] * len(self.h))
|
582 |
+
|
583 |
+
# Prepare head mask if needed
|
584 |
+
# 1.0 in head_mask indicate we keep the head
|
585 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
586 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
587 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
588 |
+
|
589 |
+
if inputs_embeds is None:
|
590 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
591 |
+
|
592 |
+
hidden_states = inputs_embeds
|
593 |
+
|
594 |
+
presents = () if use_cache else None
|
595 |
+
all_self_attentions = () if output_attentions else None
|
596 |
+
all_hidden_states = () if output_hidden_states else None
|
597 |
+
|
598 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
599 |
+
seq_length_with_past = seq_length
|
600 |
+
past_key_values_length = 0
|
601 |
+
if past_key_values[0] is not None:
|
602 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
603 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
604 |
+
if attention_mask is None:
|
605 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
606 |
+
else:
|
607 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
608 |
+
|
609 |
+
if self.alibi:
|
610 |
+
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
611 |
+
else:
|
612 |
+
alibi = None
|
613 |
+
|
614 |
+
causal_mask = self._prepare_attn_mask(
|
615 |
+
attention_mask,
|
616 |
+
input_shape=(batch_size, seq_length),
|
617 |
+
past_key_values_length=past_key_values_length,
|
618 |
+
)
|
619 |
+
|
620 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
621 |
+
|
622 |
+
if output_hidden_states:
|
623 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
624 |
+
|
625 |
+
if self.gradient_checkpointing and self.training:
|
626 |
+
|
627 |
+
if use_cache:
|
628 |
+
logger.warning(
|
629 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
630 |
+
)
|
631 |
+
use_cache = False
|
632 |
+
|
633 |
+
def create_custom_forward(module):
|
634 |
+
def custom_forward(*inputs):
|
635 |
+
# None for past_key_value
|
636 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
637 |
+
|
638 |
+
return custom_forward
|
639 |
+
|
640 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
641 |
+
create_custom_forward(block),
|
642 |
+
hidden_states,
|
643 |
+
alibi,
|
644 |
+
causal_mask,
|
645 |
+
head_mask[i],
|
646 |
+
)
|
647 |
+
else:
|
648 |
+
outputs = block(
|
649 |
+
hidden_states,
|
650 |
+
layer_past=layer_past,
|
651 |
+
attention_mask=causal_mask,
|
652 |
+
head_mask=head_mask[i],
|
653 |
+
use_cache=use_cache,
|
654 |
+
output_attentions=output_attentions,
|
655 |
+
alibi=alibi,
|
656 |
+
)
|
657 |
+
|
658 |
+
hidden_states = outputs[0]
|
659 |
+
if use_cache is True:
|
660 |
+
presents = presents + (outputs[1],)
|
661 |
+
|
662 |
+
if output_attentions:
|
663 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
664 |
+
|
665 |
+
# Add last hidden state
|
666 |
+
hidden_states = self.ln_f(hidden_states)
|
667 |
+
|
668 |
+
if output_hidden_states:
|
669 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
670 |
+
|
671 |
+
if not return_dict:
|
672 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
673 |
+
|
674 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
675 |
+
last_hidden_state=hidden_states,
|
676 |
+
past_key_values=presents,
|
677 |
+
hidden_states=all_hidden_states,
|
678 |
+
attentions=all_self_attentions,
|
679 |
+
)
|
680 |
+
|
681 |
+
|
682 |
+
class RWForCausalLM(RWPreTrainedModel):
|
683 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
684 |
+
|
685 |
+
def __init__(self, config: RWConfig):
|
686 |
+
super().__init__(config)
|
687 |
+
self.transformer = RWModel(config)
|
688 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
689 |
+
|
690 |
+
# Initialize weights and apply final processing
|
691 |
+
self.post_init()
|
692 |
+
|
693 |
+
def get_output_embeddings(self):
|
694 |
+
return self.lm_head
|
695 |
+
|
696 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
697 |
+
self.lm_head = new_embeddings
|
698 |
+
|
699 |
+
def prepare_inputs_for_generation(
|
700 |
+
self,
|
701 |
+
input_ids: torch.LongTensor,
|
702 |
+
past: Optional[torch.Tensor] = None,
|
703 |
+
attention_mask: Optional[torch.Tensor] = None,
|
704 |
+
**kwargs,
|
705 |
+
) -> dict:
|
706 |
+
# only last token for input_ids if past is not None
|
707 |
+
if past:
|
708 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
709 |
+
|
710 |
+
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
|
711 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
712 |
+
past = self._convert_to_rw_cache(past)
|
713 |
+
|
714 |
+
return {
|
715 |
+
"input_ids": input_ids,
|
716 |
+
"past_key_values": past,
|
717 |
+
"use_cache": kwargs.get("use_cache"),
|
718 |
+
"attention_mask": attention_mask,
|
719 |
+
}
|
720 |
+
|
721 |
+
def forward(
|
722 |
+
self,
|
723 |
+
input_ids: Optional[torch.LongTensor] = None,
|
724 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
725 |
+
attention_mask: Optional[torch.Tensor] = None,
|
726 |
+
head_mask: Optional[torch.Tensor] = None,
|
727 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
728 |
+
labels: Optional[torch.Tensor] = None,
|
729 |
+
use_cache: Optional[bool] = None,
|
730 |
+
output_attentions: Optional[bool] = None,
|
731 |
+
output_hidden_states: Optional[bool] = None,
|
732 |
+
return_dict: Optional[bool] = None,
|
733 |
+
**deprecated_arguments,
|
734 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
735 |
+
r"""
|
736 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
737 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
738 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
739 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
740 |
+
"""
|
741 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
742 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
743 |
+
warnings.warn(
|
744 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
745 |
+
" passing `position_ids`.",
|
746 |
+
FutureWarning,
|
747 |
+
)
|
748 |
+
if len(deprecated_arguments) > 0:
|
749 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
750 |
+
|
751 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
752 |
+
|
753 |
+
transformer_outputs = self.transformer(
|
754 |
+
input_ids,
|
755 |
+
past_key_values=past_key_values,
|
756 |
+
attention_mask=attention_mask,
|
757 |
+
head_mask=head_mask,
|
758 |
+
inputs_embeds=inputs_embeds,
|
759 |
+
use_cache=use_cache,
|
760 |
+
output_attentions=output_attentions,
|
761 |
+
output_hidden_states=output_hidden_states,
|
762 |
+
return_dict=return_dict,
|
763 |
+
)
|
764 |
+
hidden_states = transformer_outputs[0]
|
765 |
+
|
766 |
+
lm_logits = self.lm_head(hidden_states)
|
767 |
+
|
768 |
+
loss = None
|
769 |
+
if labels is not None:
|
770 |
+
# Shift so that tokens < n predict n
|
771 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
772 |
+
shift_labels = labels[..., 1:].contiguous()
|
773 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
774 |
+
# Flatten the tokens
|
775 |
+
loss_fct = CrossEntropyLoss()
|
776 |
+
loss = loss_fct(
|
777 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
778 |
+
)
|
779 |
+
|
780 |
+
if not return_dict:
|
781 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
782 |
+
return ((loss,) + output) if loss is not None else output
|
783 |
+
|
784 |
+
return CausalLMOutputWithCrossAttentions(
|
785 |
+
loss=loss,
|
786 |
+
logits=lm_logits,
|
787 |
+
past_key_values=transformer_outputs.past_key_values,
|
788 |
+
hidden_states=transformer_outputs.hidden_states,
|
789 |
+
attentions=transformer_outputs.attentions,
|
790 |
+
)
|
791 |
+
|
792 |
+
def _reorder_cache(
|
793 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
794 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
795 |
+
"""
|
796 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
797 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
798 |
+
beam_idx at every generation step.
|
799 |
+
|
800 |
+
Output shares the same memory storage as `past`.
|
801 |
+
"""
|
802 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
803 |
+
|
804 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
805 |
+
device_to_beam_idx = {
|
806 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
807 |
+
}
|
808 |
+
reordered_past = tuple(
|
809 |
+
(
|
810 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
811 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
812 |
+
)
|
813 |
+
for layer_past in standardized_past
|
814 |
+
)
|
815 |
+
return self._convert_to_rw_cache(reordered_past)
|
816 |
+
|
817 |
+
|
818 |
+
class RWForSequenceClassification(RWPreTrainedModel):
|
819 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
820 |
+
|
821 |
+
def __init__(self, config: RWConfig):
|
822 |
+
super().__init__(config)
|
823 |
+
self.num_labels = config.num_labels
|
824 |
+
self.transformer = RWModel(config)
|
825 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
826 |
+
|
827 |
+
# Initialize weights and apply final processing
|
828 |
+
self.post_init()
|
829 |
+
|
830 |
+
def forward(
|
831 |
+
self,
|
832 |
+
input_ids: Optional[torch.LongTensor] = None,
|
833 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
834 |
+
attention_mask: Optional[torch.Tensor] = None,
|
835 |
+
head_mask: Optional[torch.Tensor] = None,
|
836 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
837 |
+
labels: Optional[torch.Tensor] = None,
|
838 |
+
use_cache: Optional[bool] = None,
|
839 |
+
output_attentions: Optional[bool] = None,
|
840 |
+
output_hidden_states: Optional[bool] = None,
|
841 |
+
return_dict: Optional[bool] = None,
|
842 |
+
**deprecated_arguments,
|
843 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
844 |
+
r"""
|
845 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
846 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
847 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
848 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
849 |
+
"""
|
850 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
851 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
852 |
+
warnings.warn(
|
853 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
854 |
+
" passing `position_ids`.",
|
855 |
+
FutureWarning,
|
856 |
+
)
|
857 |
+
if len(deprecated_arguments) > 0:
|
858 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
859 |
+
|
860 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
861 |
+
|
862 |
+
transformer_outputs = self.transformer(
|
863 |
+
input_ids,
|
864 |
+
past_key_values=past_key_values,
|
865 |
+
attention_mask=attention_mask,
|
866 |
+
head_mask=head_mask,
|
867 |
+
inputs_embeds=inputs_embeds,
|
868 |
+
use_cache=use_cache,
|
869 |
+
output_attentions=output_attentions,
|
870 |
+
output_hidden_states=output_hidden_states,
|
871 |
+
return_dict=return_dict,
|
872 |
+
)
|
873 |
+
|
874 |
+
hidden_states = transformer_outputs[0]
|
875 |
+
logits = self.score(hidden_states)
|
876 |
+
|
877 |
+
if input_ids is not None:
|
878 |
+
batch_size = input_ids.shape[0]
|
879 |
+
else:
|
880 |
+
batch_size = inputs_embeds.shape[0]
|
881 |
+
|
882 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
883 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
884 |
+
if self.config.pad_token_id is None:
|
885 |
+
sequence_lengths = -1
|
886 |
+
else:
|
887 |
+
if input_ids is not None:
|
888 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
|
889 |
+
else:
|
890 |
+
sequence_lengths = -1
|
891 |
+
logger.warning(
|
892 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
893 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
894 |
+
)
|
895 |
+
|
896 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
897 |
+
|
898 |
+
loss = None
|
899 |
+
if labels is not None:
|
900 |
+
if self.config.problem_type is None:
|
901 |
+
if self.num_labels == 1:
|
902 |
+
self.config.problem_type = "regression"
|
903 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
904 |
+
self.config.problem_type = "single_label_classification"
|
905 |
+
else:
|
906 |
+
self.config.problem_type = "multi_label_classification"
|
907 |
+
|
908 |
+
if self.config.problem_type == "regression":
|
909 |
+
loss_fct = MSELoss()
|
910 |
+
if self.num_labels == 1:
|
911 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
912 |
+
else:
|
913 |
+
loss = loss_fct(pooled_logits, labels)
|
914 |
+
elif self.config.problem_type == "single_label_classification":
|
915 |
+
loss_fct = CrossEntropyLoss()
|
916 |
+
loss = loss_fct(pooled_logits, labels)
|
917 |
+
elif self.config.problem_type == "multi_label_classification":
|
918 |
+
loss_fct = BCEWithLogitsLoss()
|
919 |
+
loss = loss_fct(pooled_logits, labels)
|
920 |
+
if not return_dict:
|
921 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
922 |
+
return ((loss,) + output) if loss is not None else output
|
923 |
+
|
924 |
+
return SequenceClassifierOutputWithPast(
|
925 |
+
loss=loss,
|
926 |
+
logits=pooled_logits,
|
927 |
+
past_key_values=transformer_outputs.past_key_values,
|
928 |
+
hidden_states=transformer_outputs.hidden_states,
|
929 |
+
attentions=transformer_outputs.attentions,
|
930 |
+
)
|
931 |
+
|
932 |
+
|
933 |
+
class RWForTokenClassification(RWPreTrainedModel):
|
934 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
935 |
+
|
936 |
+
def __init__(self, config: RWConfig):
|
937 |
+
super().__init__(config)
|
938 |
+
self.num_labels = config.num_labels
|
939 |
+
|
940 |
+
self.transformer = RWModel(config)
|
941 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
942 |
+
classifier_dropout = config.classifier_dropout
|
943 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
944 |
+
classifier_dropout = config.hidden_dropout
|
945 |
+
else:
|
946 |
+
classifier_dropout = 0.1
|
947 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
948 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
949 |
+
|
950 |
+
# Initialize weights and apply final processing
|
951 |
+
self.post_init()
|
952 |
+
|
953 |
+
def forward(
|
954 |
+
self,
|
955 |
+
input_ids: Optional[torch.LongTensor] = None,
|
956 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
957 |
+
attention_mask: Optional[torch.Tensor] = None,
|
958 |
+
head_mask: Optional[torch.Tensor] = None,
|
959 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
960 |
+
labels: Optional[torch.Tensor] = None,
|
961 |
+
use_cache: Optional[bool] = None,
|
962 |
+
output_attentions: Optional[bool] = None,
|
963 |
+
output_hidden_states: Optional[bool] = None,
|
964 |
+
return_dict: Optional[bool] = None,
|
965 |
+
**deprecated_arguments,
|
966 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
967 |
+
r"""
|
968 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
969 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
970 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
971 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
972 |
+
"""
|
973 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
974 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
975 |
+
warnings.warn(
|
976 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
977 |
+
" passing `position_ids`.",
|
978 |
+
FutureWarning,
|
979 |
+
)
|
980 |
+
if len(deprecated_arguments) > 0:
|
981 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
982 |
+
|
983 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
984 |
+
|
985 |
+
transformer_outputs = self.transformer(
|
986 |
+
input_ids,
|
987 |
+
past_key_values=past_key_values,
|
988 |
+
attention_mask=attention_mask,
|
989 |
+
head_mask=head_mask,
|
990 |
+
inputs_embeds=inputs_embeds,
|
991 |
+
use_cache=use_cache,
|
992 |
+
output_attentions=output_attentions,
|
993 |
+
output_hidden_states=output_hidden_states,
|
994 |
+
return_dict=return_dict,
|
995 |
+
)
|
996 |
+
|
997 |
+
hidden_states = transformer_outputs[0]
|
998 |
+
hidden_states = self.dropout(hidden_states)
|
999 |
+
logits = self.classifier(hidden_states)
|
1000 |
+
|
1001 |
+
loss = None
|
1002 |
+
if labels is not None:
|
1003 |
+
batch_size, seq_length = labels.shape
|
1004 |
+
loss_fct = CrossEntropyLoss()
|
1005 |
+
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
1006 |
+
|
1007 |
+
if not return_dict:
|
1008 |
+
output = (logits,) + transformer_outputs[2:]
|
1009 |
+
return ((loss,) + output) if loss is not None else output
|
1010 |
+
|
1011 |
+
return TokenClassifierOutput(
|
1012 |
+
loss=loss,
|
1013 |
+
logits=logits,
|
1014 |
+
hidden_states=transformer_outputs.hidden_states,
|
1015 |
+
attentions=transformer_outputs.attentions,
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
|
1019 |
+
class RWForQuestionAnswering(RWPreTrainedModel):
|
1020 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
1021 |
+
|
1022 |
+
def __init__(self, config):
|
1023 |
+
super().__init__(config)
|
1024 |
+
self.transformer = RWModel(config)
|
1025 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1026 |
+
|
1027 |
+
# Initialize weights and apply final processing
|
1028 |
+
self.post_init()
|
1029 |
+
|
1030 |
+
def forward(
|
1031 |
+
self,
|
1032 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1033 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1034 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1035 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1036 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1037 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1038 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1039 |
+
output_attentions: Optional[bool] = None,
|
1040 |
+
output_hidden_states: Optional[bool] = None,
|
1041 |
+
return_dict: Optional[bool] = None,
|
1042 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1043 |
+
r"""
|
1044 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1045 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1046 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1047 |
+
are not taken into account for computing the loss.
|
1048 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1049 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1050 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1051 |
+
are not taken into account for computing the loss.
|
1052 |
+
"""
|
1053 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1054 |
+
|
1055 |
+
outputs = self.transformer(
|
1056 |
+
input_ids,
|
1057 |
+
attention_mask=attention_mask,
|
1058 |
+
position_ids=position_ids,
|
1059 |
+
head_mask=head_mask,
|
1060 |
+
inputs_embeds=inputs_embeds,
|
1061 |
+
output_attentions=output_attentions,
|
1062 |
+
output_hidden_states=output_hidden_states,
|
1063 |
+
return_dict=return_dict,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
sequence_output = outputs[0]
|
1067 |
+
|
1068 |
+
logits = self.qa_outputs(sequence_output)
|
1069 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1070 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1071 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1072 |
+
|
1073 |
+
total_loss = None
|
1074 |
+
if start_positions is not None and end_positions is not None:
|
1075 |
+
# If we are on multi-GPU, split add a dimension
|
1076 |
+
if len(start_positions.size()) > 1:
|
1077 |
+
start_positions = start_positions.squeeze(-1)
|
1078 |
+
if len(end_positions.size()) > 1:
|
1079 |
+
end_positions = end_positions.squeeze(-1)
|
1080 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1081 |
+
ignored_index = start_logits.size(1)
|
1082 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1083 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1084 |
+
|
1085 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1086 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1087 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1088 |
+
total_loss = (start_loss + end_loss) / 2
|
1089 |
+
|
1090 |
+
if not return_dict:
|
1091 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1092 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1093 |
+
|
1094 |
+
return QuestionAnsweringModelOutput(
|
1095 |
+
loss=total_loss,
|
1096 |
+
start_logits=start_logits,
|
1097 |
+
end_logits=end_logits,
|
1098 |
+
hidden_states=outputs.hidden_states,
|
1099 |
+
attentions=outputs.attentions,
|
1100 |
+
)
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd81a31f203200a2daf662a805e5f8a6294fd789b82657f7bbd689175805be9
|
3 |
+
size 780140544
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14434379520
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"transformer.h.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"transformer.h.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"transformer.h.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"transformer.h.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"transformer.h.1.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"transformer.h.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"transformer.h.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"transformer.h.10.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"transformer.h.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"transformer.h.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"transformer.h.11.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"transformer.h.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"transformer.h.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"transformer.h.12.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"transformer.h.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"transformer.h.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"transformer.h.13.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"transformer.h.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"transformer.h.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"transformer.h.14.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"transformer.h.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"transformer.h.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"transformer.h.15.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"transformer.h.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"transformer.h.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"transformer.h.16.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"transformer.h.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"transformer.h.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"transformer.h.17.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"transformer.h.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"transformer.h.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"transformer.h.18.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"transformer.h.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"transformer.h.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"transformer.h.19.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"transformer.h.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"transformer.h.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"transformer.h.2.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"transformer.h.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"transformer.h.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"transformer.h.20.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"transformer.h.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"transformer.h.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"transformer.h.21.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"transformer.h.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"transformer.h.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
100 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"transformer.h.22.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"transformer.h.23.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
104 |
+
"transformer.h.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
105 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
106 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
107 |
+
"transformer.h.23.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
108 |
+
"transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
109 |
+
"transformer.h.24.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
110 |
+
"transformer.h.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
111 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
112 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
113 |
+
"transformer.h.24.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
114 |
+
"transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
115 |
+
"transformer.h.25.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
116 |
+
"transformer.h.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
117 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
118 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
119 |
+
"transformer.h.25.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
120 |
+
"transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
121 |
+
"transformer.h.26.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
122 |
+
"transformer.h.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
123 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
124 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
125 |
+
"transformer.h.26.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
126 |
+
"transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
127 |
+
"transformer.h.27.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
128 |
+
"transformer.h.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
129 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
130 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
131 |
+
"transformer.h.27.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
132 |
+
"transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
133 |
+
"transformer.h.28.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
134 |
+
"transformer.h.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
135 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
136 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
137 |
+
"transformer.h.28.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
138 |
+
"transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
139 |
+
"transformer.h.29.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
140 |
+
"transformer.h.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
141 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
142 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
143 |
+
"transformer.h.29.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"transformer.h.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"transformer.h.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"transformer.h.3.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"transformer.h.30.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
152 |
+
"transformer.h.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"transformer.h.30.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"transformer.h.31.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"transformer.h.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"transformer.h.31.self_attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"transformer.h.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"transformer.h.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"transformer.h.4.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"transformer.h.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"transformer.h.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"transformer.h.5.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"transformer.h.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"transformer.h.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"transformer.h.6.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"transformer.h.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"transformer.h.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"transformer.h.7.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"transformer.h.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"transformer.h.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"transformer.h.8.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"transformer.h.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"transformer.h.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"transformer.h.9.self_attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
199 |
+
"transformer.ln_f.bias": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"transformer.word_embeddings.weight": "pytorch_model-00001-of-00002.bin"
|
202 |
+
}
|
203 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
">>TITLE<<",
|
4 |
+
">>ABSTRACT<<",
|
5 |
+
">>INTRODUCTION<<",
|
6 |
+
">>SUMMARY<<",
|
7 |
+
">>COMMENT<<",
|
8 |
+
">>ANSWER<<",
|
9 |
+
">>QUESTION<<",
|
10 |
+
">>DOMAIN<<",
|
11 |
+
">>PREFIX<<",
|
12 |
+
">>SUFFIX<<",
|
13 |
+
">>MIDDLE<<"
|
14 |
+
],
|
15 |
+
"eos_token": "<|endoftext|>"
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"model_max_length": 2048,
|
5 |
+
"name_or_path": "tiiuae/falcon_tokenizer",
|
6 |
+
"special_tokens_map_file": null,
|
7 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
8 |
+
}
|