Text2Text Generation
Transformers
Safetensors
English
t5
Eval Results
text-generation-inference
Inference Endpoints
ep9io commited on
Commit
c5d57c2
1 Parent(s): 635dcb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -149
README.md CHANGED
@@ -107,36 +107,48 @@ model-index:
107
 
108
  ## Model Details
109
 
110
- ### Model Description
111
-
112
  <!-- Provide a longer summary of what this model is. -->
113
 
114
  The model is a multi-label classifier designed to detect various types of bias within job descriptions.
 
 
115
 
116
  - **Developed by:** Tristan Everitt and Paul Ryan
117
- - **Funded by [optional]:** [More Information Needed]
118
- - **Shared by [optional]:** [More Information Needed]
119
- - **Model type:** [More Information Needed]
120
  - **Language(s) (NLP):** en
121
  - **License:** apache-2.0
122
- - **Finetuned from model [optional]:** google/flan-t5-xl
123
-
124
- ### Model Sources [optional]
125
 
126
- <!-- Provide the basic links for the model. -->
127
 
128
- - **Repository:** https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
129
- - **Paper [optional]:** [More Information Needed]
130
- - **Demo [optional]:** [More Information Needed]
131
 
132
  ## Uses
133
 
134
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
135
 
136
- ### Direct Use
 
 
 
 
137
 
138
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
139
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  ```python
142
  from transformers import pipeline
@@ -157,8 +169,17 @@ The model is a multi-label classifier designed to detect various types of bias w
157
  ]]
158
 
159
 
160
- Classification Report:
161
-
 
 
 
 
 
 
 
 
 
162
  precision recall f1-score support
163
 
164
  disability 0.88 0.46 0.61 80
@@ -174,103 +195,7 @@ The model is a multi-label classifier designed to detect various types of bias w
174
  macro avg 0.83 0.71 0.74 640
175
  weighted avg 0.83 0.71 0.74 640
176
  samples avg 0.74 0.76 0.75 640
177
-
178
-
179
-
180
- ### Downstream Use [optional]
181
-
182
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
183
-
184
- [More Information Needed]
185
-
186
- ### Out-of-Scope Use
187
-
188
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
189
-
190
- [More Information Needed]
191
-
192
- ## Bias, Risks, and Limitations
193
-
194
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
195
-
196
- [More Information Needed]
197
 
198
- ### Recommendations
199
-
200
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
201
-
202
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
203
-
204
- ## How to Get Started with the Model
205
-
206
- Use the code below to get started with the model.
207
-
208
- [More Information Needed]
209
-
210
- ## Training Details
211
-
212
- ### Training Data
213
-
214
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
215
-
216
- [More Information Needed]
217
-
218
- ### Training Procedure
219
-
220
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
221
-
222
- #### Preprocessing [optional]
223
-
224
- [More Information Needed]
225
-
226
-
227
- #### Training Hyperparameters
228
-
229
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
230
-
231
- #### Speeds, Sizes, Times [optional]
232
-
233
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
234
-
235
- [More Information Needed]
236
-
237
- ## Evaluation
238
-
239
- <!-- This section describes the evaluation protocols and provides the results. -->
240
-
241
- ### Testing Data, Factors & Metrics
242
-
243
- #### Testing Data
244
-
245
- <!-- This should link to a Dataset Card if possible. -->
246
-
247
- [More Information Needed]
248
-
249
- #### Factors
250
-
251
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
252
-
253
- [More Information Needed]
254
-
255
- #### Metrics
256
-
257
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
258
-
259
- [More Information Needed]
260
-
261
- ### Results
262
-
263
- [More Information Needed]
264
-
265
- #### Summary
266
-
267
-
268
-
269
- ## Model Examination [optional]
270
-
271
- <!-- Relevant interpretability work for the model goes here -->
272
-
273
- [More Information Needed]
274
 
275
  ## Environmental Impact
276
 
@@ -279,55 +204,27 @@ Use the code below to get started with the model.
279
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
280
 
281
  - **Hardware Type:** x86_64
282
- - **Hours used:** N/A
283
  - **Cloud Provider:** N/A
284
  - **Compute Region:** N/A
285
  - **Carbon Emitted:** N/A
286
 
287
- ## Technical Specifications [optional]
288
-
289
- ### Model Architecture and Objective
290
-
291
- [More Information Needed]
292
-
293
  ### Compute Infrastructure
294
 
295
- Linux 6.5.0-35-generic x86_64
 
 
 
296
 
297
- #### Hardware
298
-
299
- [More Information Needed]
300
 
301
  #### Software
302
 
303
- Python 3.10.12
304
 
305
- ## Citation [optional]
306
 
307
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
308
 
309
  **BibTeX:**
310
 
311
- [More Information Needed]
312
-
313
- **APA:**
314
-
315
- [More Information Needed]
316
-
317
- ## Glossary [optional]
318
-
319
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
320
-
321
- [More Information Needed]
322
-
323
- ## More Information [optional]
324
-
325
- [More Information Needed]
326
-
327
- ## Model Card Authors [optional]
328
-
329
- See developers
330
-
331
- ## Model Card Contact
332
-
333
- See developers
 
107
 
108
  ## Model Details
109
 
 
 
110
  <!-- Provide a longer summary of what this model is. -->
111
 
112
  The model is a multi-label classifier designed to detect various types of bias within job descriptions.
113
+ NOTE: This model was not used in the paper and it was trained without the use of QLoRA.
114
+ It serves only as a comparison for the model trained using QLoRA: [flan-t5-xl-job-bias-qlora-seq2seq-cls](https://huggingface.co/2024-mcm-everitt-ryan/flan-t5-xl-job-bias-qlora-seq2seq-cls)
115
 
116
  - **Developed by:** Tristan Everitt and Paul Ryan
117
+ - **Model type:** Encoder-Decoder
 
 
118
  - **Language(s) (NLP):** en
119
  - **License:** apache-2.0
120
+ - **Finetuned from model:** google/flan-t5-xl
 
 
121
 
122
+ ### Model Sources
123
 
124
+ - **Repository:** https://github.com/2024-mcm-everitt-ryan
125
+ - **Paper:** In Progress
 
126
 
127
  ## Uses
128
 
129
+ The primary target audience for these models are researchers dedicated to identifying biased language in job descriptions.
130
+
131
+ ### Out-of-Scope Use
132
 
133
+ Due to the limitations inherent in large-scale language models, they should not be utilised in applications requiring factual or accurate outputs. These models do not distinguish between fact and fiction, and implicit biases are inherently subjective.
134
+
135
+ Moreover, as language models mirror the biases present in their training data, they should not be deployed in systems that directly interact with humans unless the deployers have first conducted a thorough analysis of relevant biases for the specific use case.
136
+
137
+ ## Bias, Risks, and Limitations
138
 
139
+ It is imperative that all users, both direct and downstream, are aware of the risks, biases, and limitations associated with this model. Important considerations include:
140
 
141
+ - Bias in Training Data: The model may inherit and perpetuate biases from the data it was trained on.
142
+ - Subjectivity of Bias: Bias detection is inherently subjective, and perceptions of bias can differ across contexts and users.
143
+ - Accuracy Concerns: The model’s outputs are not guaranteed to be true or accurate, making it unsuitable for applications that require reliable information.
144
+ - Human Interaction Risks: When incorporated into systems that interact with humans, the model’s biases may affect interactions and decision-making, potentially leading to unintended consequences.
145
+
146
+ It is crucial for users to conduct comprehensive evaluations and consider these factors when applying the model in any context.
147
+
148
+
149
+ ## How to Get Started with the Model
150
+
151
+ Use the code below to get started with the model.
152
 
153
  ```python
154
  from transformers import pipeline
 
169
  ]]
170
 
171
 
172
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
173
+ ## Training Details
174
+
175
+ ### Training Data
176
+
177
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
178
+
179
+ - [2024-mcm-everitt-ryan/benchmark](https://huggingface.co/datasets/2024-mcm-everitt-ryan/benchmark)
180
+
181
+ ### Results
182
+
183
  precision recall f1-score support
184
 
185
  disability 0.88 0.46 0.61 80
 
195
  macro avg 0.83 0.71 0.74 640
196
  weighted avg 0.83 0.71 0.74 640
197
  samples avg 0.74 0.76 0.75 640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
  ## Environmental Impact
201
 
 
204
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
205
 
206
  - **Hardware Type:** x86_64
207
+ - **Hours used:** 2.08
208
  - **Cloud Provider:** N/A
209
  - **Compute Region:** N/A
210
  - **Carbon Emitted:** N/A
211
 
 
 
 
 
 
 
212
  ### Compute Infrastructure
213
 
214
+ - Linux 5.15.0-78-generic x86_64
215
+ - MemTotal: 1056619068 kB
216
+ - 256 X AMD EPYC 7702 64-Core Processor
217
+ - GPU_0: NVIDIA L40S
218
 
 
 
 
219
 
220
  #### Software
221
 
222
+ python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio 4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens 2.4.1, async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26, Babel 2.14.0, beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0, blinker 1.4, botocore 1.34.144, certifi 2024.2.2, cffi 1.16.0, charset-normalizer 3.3.2, click 8.1.7, cloudpickle 3.0.0, colorama 0.4.6, comm 0.2.1, cryptography 3.4.8, dask 2024.7.0, datasets 2.20.0, dbus-python 1.2.18, debugpy 1.8.0, decorator 5.1.1, defusedxml 0.7.1, dill 0.3.8, distro 1.7.0, docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate 0.4.2, exceptiongroup 1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1, flash-attn 2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer 0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4, idna 3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython 8.21.0, ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi 0.19.1, jeepney 0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5 0.9.14, jsonpointer 2.4, jsonschema 4.21.1, jsonschema-specifications 2023.12.1, jupyter-archive 3.4.0, jupyter_client 7.4.9, jupyter_contrib_core 0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core 5.7.1, jupyter-events 0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp 2.2.2, jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5, jupyter_server_terminals 0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0, jupyterlab_server 2.25.2, jupyterlab-widgets 3.0.9, keyring 23.5.0, launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri 1.0.6, locket 1.0.0, lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune 3.0.2, more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16, nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2, nest-asyncio 1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim 0.2.3, numpy 1.26.3, nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12 12.1.105, nvidia-cuda-nvrtc-cu12 12.1.105, nvidia-cuda-runtime-cu12 12.1.105, nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12 11.0.2.54, nvidia-curand-cu12 10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12 12.1.0.106, nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12 12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2, pandocfilters 1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0, pillow 10.2.0, pip 24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0, prometheus-client 0.19.0, prompt-toolkit 3.0.43, protobuf 5.27.2, psutil 5.9.8, ptyprocess 0.7.0, pure-eval 0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6, pyasn1 0.6.0, pycparser 2.21, Pygments 2.17.2, PyGObject 3.42.1, PyJWT 2.3.0, pyparsing 2.4.7, pytest 8.2.2, python-apt 2.4.0+ubuntu3, python-dateutil 2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML 6.0.1, pyzmq 24.0.1, referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator 0.1.4, rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2, safetensors 0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1, Send2Trash 1.8.2, sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools 69.0.3, six 1.16.0, sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy 1.12, tabulate 0.9.0, terminado 0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0, tinycss2 1.2.1, tokenizers 0.19.1, tomli 2.0.1, toolz 0.12.1, torch 2.2.0, torchaudio 2.2.0, torchdata 0.7.1, torchtext 0.17.0, torchvision 0.17.0, tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers 4.42.4, triton 2.2.0, types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0, tzdata 2024.1, uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13, webcolors 1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0, widgetsnbextension 4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0
223
 
224
+ ## Citation
225
 
226
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
227
 
228
  **BibTeX:**
229
 
230
+ In Progress