Update README.md
Browse files
README.md
CHANGED
@@ -107,36 +107,48 @@ model-index:
|
|
107 |
|
108 |
## Model Details
|
109 |
|
110 |
-
### Model Description
|
111 |
-
|
112 |
<!-- Provide a longer summary of what this model is. -->
|
113 |
|
114 |
The model is a multi-label classifier designed to detect various types of bias within job descriptions.
|
|
|
|
|
115 |
|
116 |
- **Developed by:** Tristan Everitt and Paul Ryan
|
117 |
-
- **
|
118 |
-
- **Shared by [optional]:** [More Information Needed]
|
119 |
-
- **Model type:** [More Information Needed]
|
120 |
- **Language(s) (NLP):** en
|
121 |
- **License:** apache-2.0
|
122 |
-
- **Finetuned from model
|
123 |
-
|
124 |
-
### Model Sources [optional]
|
125 |
|
126 |
-
|
127 |
|
128 |
-
- **Repository:** https://
|
129 |
-
- **Paper
|
130 |
-
- **Demo [optional]:** [More Information Needed]
|
131 |
|
132 |
## Uses
|
133 |
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
```python
|
142 |
from transformers import pipeline
|
@@ -157,8 +169,17 @@ The model is a multi-label classifier designed to detect various types of bias w
|
|
157 |
]]
|
158 |
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
precision recall f1-score support
|
163 |
|
164 |
disability 0.88 0.46 0.61 80
|
@@ -174,103 +195,7 @@ The model is a multi-label classifier designed to detect various types of bias w
|
|
174 |
macro avg 0.83 0.71 0.74 640
|
175 |
weighted avg 0.83 0.71 0.74 640
|
176 |
samples avg 0.74 0.76 0.75 640
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
### Downstream Use [optional]
|
181 |
-
|
182 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
### Out-of-Scope Use
|
187 |
-
|
188 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Bias, Risks, and Limitations
|
193 |
-
|
194 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
|
198 |
-
### Recommendations
|
199 |
-
|
200 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
201 |
-
|
202 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
203 |
-
|
204 |
-
## How to Get Started with the Model
|
205 |
-
|
206 |
-
Use the code below to get started with the model.
|
207 |
-
|
208 |
-
[More Information Needed]
|
209 |
-
|
210 |
-
## Training Details
|
211 |
-
|
212 |
-
### Training Data
|
213 |
-
|
214 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
215 |
-
|
216 |
-
[More Information Needed]
|
217 |
-
|
218 |
-
### Training Procedure
|
219 |
-
|
220 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
221 |
-
|
222 |
-
#### Preprocessing [optional]
|
223 |
-
|
224 |
-
[More Information Needed]
|
225 |
-
|
226 |
-
|
227 |
-
#### Training Hyperparameters
|
228 |
-
|
229 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
230 |
-
|
231 |
-
#### Speeds, Sizes, Times [optional]
|
232 |
-
|
233 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
234 |
-
|
235 |
-
[More Information Needed]
|
236 |
-
|
237 |
-
## Evaluation
|
238 |
-
|
239 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
240 |
-
|
241 |
-
### Testing Data, Factors & Metrics
|
242 |
-
|
243 |
-
#### Testing Data
|
244 |
-
|
245 |
-
<!-- This should link to a Dataset Card if possible. -->
|
246 |
-
|
247 |
-
[More Information Needed]
|
248 |
-
|
249 |
-
#### Factors
|
250 |
-
|
251 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
252 |
-
|
253 |
-
[More Information Needed]
|
254 |
-
|
255 |
-
#### Metrics
|
256 |
-
|
257 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
258 |
-
|
259 |
-
[More Information Needed]
|
260 |
-
|
261 |
-
### Results
|
262 |
-
|
263 |
-
[More Information Needed]
|
264 |
-
|
265 |
-
#### Summary
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
## Model Examination [optional]
|
270 |
-
|
271 |
-
<!-- Relevant interpretability work for the model goes here -->
|
272 |
-
|
273 |
-
[More Information Needed]
|
274 |
|
275 |
## Environmental Impact
|
276 |
|
@@ -279,55 +204,27 @@ Use the code below to get started with the model.
|
|
279 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
280 |
|
281 |
- **Hardware Type:** x86_64
|
282 |
-
- **Hours used:**
|
283 |
- **Cloud Provider:** N/A
|
284 |
- **Compute Region:** N/A
|
285 |
- **Carbon Emitted:** N/A
|
286 |
|
287 |
-
## Technical Specifications [optional]
|
288 |
-
|
289 |
-
### Model Architecture and Objective
|
290 |
-
|
291 |
-
[More Information Needed]
|
292 |
-
|
293 |
### Compute Infrastructure
|
294 |
|
295 |
-
Linux
|
|
|
|
|
|
|
296 |
|
297 |
-
#### Hardware
|
298 |
-
|
299 |
-
[More Information Needed]
|
300 |
|
301 |
#### Software
|
302 |
|
303 |
-
|
304 |
|
305 |
-
## Citation
|
306 |
|
307 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
308 |
|
309 |
**BibTeX:**
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
**APA:**
|
314 |
-
|
315 |
-
[More Information Needed]
|
316 |
-
|
317 |
-
## Glossary [optional]
|
318 |
-
|
319 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
320 |
-
|
321 |
-
[More Information Needed]
|
322 |
-
|
323 |
-
## More Information [optional]
|
324 |
-
|
325 |
-
[More Information Needed]
|
326 |
-
|
327 |
-
## Model Card Authors [optional]
|
328 |
-
|
329 |
-
See developers
|
330 |
-
|
331 |
-
## Model Card Contact
|
332 |
-
|
333 |
-
See developers
|
|
|
107 |
|
108 |
## Model Details
|
109 |
|
|
|
|
|
110 |
<!-- Provide a longer summary of what this model is. -->
|
111 |
|
112 |
The model is a multi-label classifier designed to detect various types of bias within job descriptions.
|
113 |
+
NOTE: This model was not used in the paper and it was trained without the use of QLoRA.
|
114 |
+
It serves only as a comparison for the model trained using QLoRA: [flan-t5-xl-job-bias-qlora-seq2seq-cls](https://huggingface.co/2024-mcm-everitt-ryan/flan-t5-xl-job-bias-qlora-seq2seq-cls)
|
115 |
|
116 |
- **Developed by:** Tristan Everitt and Paul Ryan
|
117 |
+
- **Model type:** Encoder-Decoder
|
|
|
|
|
118 |
- **Language(s) (NLP):** en
|
119 |
- **License:** apache-2.0
|
120 |
+
- **Finetuned from model:** google/flan-t5-xl
|
|
|
|
|
121 |
|
122 |
+
### Model Sources
|
123 |
|
124 |
+
- **Repository:** https://github.com/2024-mcm-everitt-ryan
|
125 |
+
- **Paper:** In Progress
|
|
|
126 |
|
127 |
## Uses
|
128 |
|
129 |
+
The primary target audience for these models are researchers dedicated to identifying biased language in job descriptions.
|
130 |
+
|
131 |
+
### Out-of-Scope Use
|
132 |
|
133 |
+
Due to the limitations inherent in large-scale language models, they should not be utilised in applications requiring factual or accurate outputs. These models do not distinguish between fact and fiction, and implicit biases are inherently subjective.
|
134 |
+
|
135 |
+
Moreover, as language models mirror the biases present in their training data, they should not be deployed in systems that directly interact with humans unless the deployers have first conducted a thorough analysis of relevant biases for the specific use case.
|
136 |
+
|
137 |
+
## Bias, Risks, and Limitations
|
138 |
|
139 |
+
It is imperative that all users, both direct and downstream, are aware of the risks, biases, and limitations associated with this model. Important considerations include:
|
140 |
|
141 |
+
- Bias in Training Data: The model may inherit and perpetuate biases from the data it was trained on.
|
142 |
+
- Subjectivity of Bias: Bias detection is inherently subjective, and perceptions of bias can differ across contexts and users.
|
143 |
+
- Accuracy Concerns: The model’s outputs are not guaranteed to be true or accurate, making it unsuitable for applications that require reliable information.
|
144 |
+
- Human Interaction Risks: When incorporated into systems that interact with humans, the model’s biases may affect interactions and decision-making, potentially leading to unintended consequences.
|
145 |
+
|
146 |
+
It is crucial for users to conduct comprehensive evaluations and consider these factors when applying the model in any context.
|
147 |
+
|
148 |
+
|
149 |
+
## How to Get Started with the Model
|
150 |
+
|
151 |
+
Use the code below to get started with the model.
|
152 |
|
153 |
```python
|
154 |
from transformers import pipeline
|
|
|
169 |
]]
|
170 |
|
171 |
|
172 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
173 |
+
## Training Details
|
174 |
+
|
175 |
+
### Training Data
|
176 |
+
|
177 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
178 |
+
|
179 |
+
- [2024-mcm-everitt-ryan/benchmark](https://huggingface.co/datasets/2024-mcm-everitt-ryan/benchmark)
|
180 |
+
|
181 |
+
### Results
|
182 |
+
|
183 |
precision recall f1-score support
|
184 |
|
185 |
disability 0.88 0.46 0.61 80
|
|
|
195 |
macro avg 0.83 0.71 0.74 640
|
196 |
weighted avg 0.83 0.71 0.74 640
|
197 |
samples avg 0.74 0.76 0.75 640
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
## Environmental Impact
|
201 |
|
|
|
204 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
205 |
|
206 |
- **Hardware Type:** x86_64
|
207 |
+
- **Hours used:** 2.08
|
208 |
- **Cloud Provider:** N/A
|
209 |
- **Compute Region:** N/A
|
210 |
- **Carbon Emitted:** N/A
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
### Compute Infrastructure
|
213 |
|
214 |
+
- Linux 5.15.0-78-generic x86_64
|
215 |
+
- MemTotal: 1056619068 kB
|
216 |
+
- 256 X AMD EPYC 7702 64-Core Processor
|
217 |
+
- GPU_0: NVIDIA L40S
|
218 |
|
|
|
|
|
|
|
219 |
|
220 |
#### Software
|
221 |
|
222 |
+
python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio 4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens 2.4.1, async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26, Babel 2.14.0, beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0, blinker 1.4, botocore 1.34.144, certifi 2024.2.2, cffi 1.16.0, charset-normalizer 3.3.2, click 8.1.7, cloudpickle 3.0.0, colorama 0.4.6, comm 0.2.1, cryptography 3.4.8, dask 2024.7.0, datasets 2.20.0, dbus-python 1.2.18, debugpy 1.8.0, decorator 5.1.1, defusedxml 0.7.1, dill 0.3.8, distro 1.7.0, docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate 0.4.2, exceptiongroup 1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1, flash-attn 2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer 0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4, idna 3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython 8.21.0, ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi 0.19.1, jeepney 0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5 0.9.14, jsonpointer 2.4, jsonschema 4.21.1, jsonschema-specifications 2023.12.1, jupyter-archive 3.4.0, jupyter_client 7.4.9, jupyter_contrib_core 0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core 5.7.1, jupyter-events 0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp 2.2.2, jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5, jupyter_server_terminals 0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0, jupyterlab_server 2.25.2, jupyterlab-widgets 3.0.9, keyring 23.5.0, launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri 1.0.6, locket 1.0.0, lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune 3.0.2, more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16, nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2, nest-asyncio 1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim 0.2.3, numpy 1.26.3, nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12 12.1.105, nvidia-cuda-nvrtc-cu12 12.1.105, nvidia-cuda-runtime-cu12 12.1.105, nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12 11.0.2.54, nvidia-curand-cu12 10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12 12.1.0.106, nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12 12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2, pandocfilters 1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0, pillow 10.2.0, pip 24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0, prometheus-client 0.19.0, prompt-toolkit 3.0.43, protobuf 5.27.2, psutil 5.9.8, ptyprocess 0.7.0, pure-eval 0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6, pyasn1 0.6.0, pycparser 2.21, Pygments 2.17.2, PyGObject 3.42.1, PyJWT 2.3.0, pyparsing 2.4.7, pytest 8.2.2, python-apt 2.4.0+ubuntu3, python-dateutil 2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML 6.0.1, pyzmq 24.0.1, referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator 0.1.4, rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2, safetensors 0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1, Send2Trash 1.8.2, sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools 69.0.3, six 1.16.0, sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy 1.12, tabulate 0.9.0, terminado 0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0, tinycss2 1.2.1, tokenizers 0.19.1, tomli 2.0.1, toolz 0.12.1, torch 2.2.0, torchaudio 2.2.0, torchdata 0.7.1, torchtext 0.17.0, torchvision 0.17.0, tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers 4.42.4, triton 2.2.0, types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0, tzdata 2024.1, uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13, webcolors 1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0, widgetsnbextension 4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0
|
223 |
|
224 |
+
## Citation
|
225 |
|
226 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
227 |
|
228 |
**BibTeX:**
|
229 |
|
230 |
+
In Progress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|